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ABSTRACT

In the first part of this dissertation, the integral equation approaches are developed to analyze the

wave propagation in periodic structures. Firstly, an integral equation approach is developed to analyze

the two-dimensional (2-D) scattering from multilayered periodic array. The proposed approach is capa-

ble of handling scattering from the array filled with different media in different layers. Combining the

equivalence principle algorithm and connection scheme (EPACS), it can be avoided to find and evaluate

the multilayered periodic Green’s functions. For 2N identical layers, the elimination of the unknowns

between top and bottom surfaces can be accelerated using the logarithm algorithm. More importantly,

based on EPACS, an approach is proposed to effectively handle the semi-infinitely layered case in which

a unit consisting of several layers is repeated infinitely in one direction.

Secondly, the integral-equation (IE) method formulated in the spatial domain is employed to calcu-

late the scattering from the doubly periodic array of three-dimensional (3-D) perfect electric conductor

(PEC) objects. The special testing and basis functions are proposed to handle the problem with non-zero

normal components of currents at the boundary of one period. Moreover, a relationship between the

scattering from the PEC screen and its complementary structure is established. In order to efficiently

compute the matrix elements from the IE approach, an acceleration technique with the exponential

convergence rate is applied to evaluate the doubly periodic Green’s function. The formulations in this

technique are appropriately modified so that the new form facilitates numerical calculation for the gen-

eral cases.

In the second part of this dissertation, the error analysis of various basis functions in projection of

the plane wave was conducted, including pulse basis, triangular basis, the basis of their higher-order ver-

sion, and the divergence-conforming basis on rectangular and triangular elements. The projection error

is given analytical, asymptotically, and numerically. The application of the p-th order one-dimensional
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(1D) basis can result in the projection error which is asymptotically proportional to (p + 1)-th power

of the density of unknowns. Based on the analytical projection errors in 1D case, it is found when the

expansion basis is fixed, the application of different testing functions only affect the constant coefficient

of the projection error rather than the order. Generally, the error of divergence-conforming basis in

projection of curl-free vectors is less than that of divergence-free vectors.
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CHAPTER 1 INTRODUCTION

The thesis is comprised of two parts of research work. Part I is on the electromagnetic modelling

of the periodic structures. The integral equation approaches are developed to analyze the periodic

structures. Part II is about the error analysis of various basis functions in projection of plane waves.

The last chapter gives a conclusion to this thesis.

1.1 Introduction to Part I

1.1.1 Review on application of periodic structures

In the last several decades, periodic structures have gained intensive interests and attention of the

researchers in the field of electromagnetics. They can find a variety of applications in the area of elec-

tromagnetics. First, the periodic structures was applied to inhabit the spontaneous emission in semicon-

ductor laser [1]. Researchers found that the photonic crystal structures can have a full photonic bandgap,

where the electromagnetic (EM) wave is forbidden to propagate in every direction [2]. Secondly, the

periodic structure can be applied to create the artificial material [3]. Recently, researchers designed

the metamaterial with negative permittivity and permeability [4]-[7]. The engineered metamaterial can

provide the EM properties that is difficult to be found in the conventional and natural material. Thirdly,

the periodic structure can apply to the design of waveguide filter [3].

Fourthly, the periodic structure has many application in the microwave engineering. For example,

the frequency selective surface (FSS) [8], [9], which has the frequency filtering property, is a doubly

periodic array of patches and apertures. FSS can be applied as antenna radomes for control of EM wave

transmission and reflection. The FSS reflector can be employed to separate feeds of different frequency

bands in reflector antenna systems. The other example is the electromagnetic bandgap (EBG) structures

[10]-[13], which are periodic structures made by metallic, dielectric or metallodielectric elements. The
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EBG structures has important application in the design of improved antennas: 1) they serve as artificial

magnetic conductor ground planes to design low profile antennas; 2) they are used as substrates for

microstrip patch antennas to suppress the surface wave; 3) they are used as superstrates over radiation

sources to increase the radiation aperture of the original structure, and thus the directivity.

1.1.2 Review on theory about periodic structures

The EM problems about the periodic structures can be categorized into three types: eigenvalue,

source driven and homogenization problems. For the eigenvalue problem, the objective is to find the

the resonant frequencies for a given wave vector or wave vectors for a given resonant frequency. The

resultant band structure, describing the relationship between the resonant frequencies and the wave

vectors, forms the k − β diagram (β = ω/c). The EM fields are not excited by sources, but subject

to the boundary conditions. In general, the eigenvalue problem is in regard to the one-dimensional (1-

D) singly periodic, two-dimensional (2-D) doubly periodic and three-dimensional (3-D) triply periodic

structures. Singly, doubly, and triply periodic indicate the structures are periodic in one, two, and three

directions, respectively. 1-D, 2-D, and 3-D indicate the EM quantities varies with one, two, and three

independent spatial variables, respectively. The source driven problem is the scattering problem of

periodic structures, which is usually to calculate the reflection and transmission coefficients of Flquet’s

modes which is excited by the incident EM wave. For this problem, the number of directions, along

which the structure is periodic, is less than that of the dimensions of the problem. The homogenization

of periodic structures is to find the effective permittivity and permeability of the composite material.

Several methods have been successfully developed to solve the eigenvalue problem, including the

plane wave method [14], [15], order-N method [16], transfer matrix method (TMM) [17], [18], hybrid

methods [19], [20], finite-difference method [21], etc. The plane wave method expands the EM quanti-

ties into plane waves. The wave equation reduces to a matrix eigensystem. The eigenvalues represent

the resonant frequencies and the eigenvectors represent the Floquet’s modes. The order-N method is

essentially the finite-difference method in time domain. The computing time scales linearly with the

size of the system. The TMM method is based on Maxwell equations on a lattice. The relationship

between the fields on two planes can be described by the transfer matrices. At fixed frequency, if the
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fields on one side of a sample is given, we can transfer the fields throughout the whole sample. Unlike

the plane wave method, the TMM method is applicable to the case of frequency-dispersion media. This

is because that the TMM method seeks the wave vectors for a given resonant frequency, while the plane

wave method finds the resonant frequencies for a given wave vector.

The electromagnetic scattering from periodic structures has been investigated by many methods,

including the mode-matching method [22]-[24], finite element method (FEM) [25]-[26], boundary

integral-modal (BI-modal) method [27], finite element-boundary integral (FE-BI) method [28]-[29],

integral-equation (IE) method [9], [30]-[34], T-matrix method [35]-[36], etc.

The mode-matching method is suitable to the canonical geometry, such as rectangular or circular

PEC patches or apertures perforated from PEC screens. The FEM, which is a full-wave approach, can

deal with the arbitrary shape and inhomogeneous media. The FE-BI method takes advantage of BI on

the top and/or bottom surfaces of one unit cell, instead of absorbing boundary condition (ABC) used

in the FEM. The application of BI is more accurate than that of ABC at the cost of the partially full

coefficient matrix.

The IE approaches for periodic structures can be formulated in spectral and spatial domains. The

former [9], [30]-[31] is limited to planar periodic metallic structures. In addition, the expansion of

electromagnetic (EM) quantities into Floquet’s modes has slow convergence rate. The latter can treat

the doubly periodic objects with arbitrary shape [32]-[34]. However, it calls for the efficient calculation

of the periodic Green’s function (PGF). Fortunately, some acceleration techniques have been proposed

to achieve the fast convergence for the PGF [37]-[40].

Every material consists of a collection of objects. When the objects’ sizes and spacing are much

less than the wavelength, the material can be described by the effective permittivity and permeability

which present the homogenous view of EM properties of the material [5], [7]. For the homogenization

problem, some researchers retrieved the effective parameters by the calculation of the band structure

[41]. This approach is not available in the frequency band gaps or when the materials are lossy. An-

other approach extracts the effective parameters from measured or simulated scattering parameters [42].

However, this approach may be unstable and inaccurate in some cases. Recently, a rigorous integral-

equation approach was proposed to homogenize the arbitrary periodic dielectric and/or metallic meta-
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materials [43]. This approach takes account into both spatial and frequency dispersions and is available

in the frequency band gaps.

1.1.3 Research work on periodic structure

In Chapter 2, several approaches for modeling of the wave propagation in 2-D structures are im-

plemented. First, the IE approach for scattering from the singly periodic array of 2-D PEC conducting

objects is described. Secondly, the hybrid IE-plane wave approach [19] is implemented to calculate the

band structure of the metallic crystals. The in-house code will provide with some numerical results to

validate the proposed approaches in Chapters 3 and 4.

In Chapter 3, an IE approach is developed to investigate the frequency response of a 2-D singly peri-

odic array. By the application of the equivalence principle algorithm and connection scheme (EPACS),

the case of the periodic array filled with different media in different layers can be treated [44]. The

computational domain first is restricted to one period of the multilayered array. In one period, each

layer can be treated as an individual cell. Then, the equivalence principle can be applied separately to

each individual cell to obtain the integral equations for equivalent currents on the outside boundary of

the cell and the perfect electric conductor (PEC) surface. In general, when the cells are not overlapping

or connected with each other, it is necessary to build up the relationship between them by applying IE

to their outside boundary [45], [46]. However, for the multilayered periodic structure, two neighbor-

ing cells are connected via the same interface. Thus, by combining the periodic boundary condition

(PBC) with the connection scheme, the relationship can be established between the currents or fields on

the topmost and bottommost surfaces. Finally, two integral equations on the topmost and bottommost

surfaces, which involve the periodic Green’s function, are required to establish the complete equation

system. After seeking the solution of equivalent currents on the topmost and bottommost surfaces, the

proper way is proposed to correctly calculate the current on the surface of PEC object.

Moreover, based on EPACS, an effective approach is proposed to handle the semi-infinitely layered

case in which one unit consisting of several layers is repeated infinitely along one direction. Each

unit can be regarded as a two-port network. For this semi-infinitely layered array, the impedance matrix

representing the relationship between the equivalent magnetic and electric currents on the top surface of
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each unit should be identical because the network is infinitely extended when one looks into it from the

top surface of any unit. Based on this fact, the equation for this impedance matrix can be established by

EPACS and solved using a proper iterative method. After obtaining the impedance matrix, the integral

equation on the topmost surface is required to construct the complete system of equations for solving

the fields or currents on the top surfaces. Then the reflection coefficients of Floquet’s harmonics can

be found. It should be mentioned that the direct IE approach definitely cannot handle the case of semi-

infinitely layered array since the number of unknowns for the direct IE approach will be infinite. Finally,

numerical results are given to verify the proposed approaches.

In Chapter 4, the electric field integral equation (EFIE) formulation in the spatial domain is em-

ployed to calculate scattering from doubly periodic array of PEC objects. The following three issues

about the IE approach are addressed.

Firstly, the special testing and basis functions are proposed to handle the problem with non-zero

normal components of currents at the boundary of one period. As we know, the computational domain

for periodic structures is restricted to one period. The objects with periodicity may be truncated by

the four-side periodic boundaries (PB). In this case, the electric current flowing out the boundary of

PEC surface may not be zero. If one adopts the Rao-Wilton-Glission (RWG) basis functions [47] to

expand the current, and treat the boundary in the manner which is applied to single PEC plate, namely,

does not assign unknowns on the boundary, the solution to the current will be probably inaccurate or

even wrong. This is because this procedure enforces the condition of zero outgoing current on the

truncated boundary of PEC. In our work, the special test and basis functions on the truncated boundary

are proposed to handle this problem.

Secondly, the relationship is addressed between the scattering from the PEC screen with periodicity

and its complementary structure. The Babinet’s principle for this dual problem has been proved in

several different ways [48]-[50]. This paper shows a simple way for proof of the Babinet’s principle

for periodic structures. In the proof, the IE formulation and periodic Green’s function are involved. In

addition, the relationship for the reflection and transmission coefficients between the PEC screen with

periodicity and its complementary structure will be given. For periodic apertures perforated from the

screen, one can apply integral equations about the electric current on PEC part of the screen. However,
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the unknown density near the aperture should be made large enough to achieve the accurate solution

for the scattering. In contrast, it will be easier to achieve the convergence of solution if one solves the

integral equation for the electric current on PEC patches in its dual problem. Then one may find the

solution for scattering from the apertures using the relationship mentioned.

Finally, the acceleration technique in [40] is applied to evaluate the PGF. It is with exponential

convergence rate and can be easily implemented. One can take advantage of the intrinsic function in

Fortran to evaluate the error function involved in [40] since its argument can be real number. The

formulations in this technique are appropriately modified so that the new form facilitates numerical

calculation for the general cases. Therefore, there will exist no obstacles to effectively evaluate the

matrix element of the IE approach.

1.2 Introduction to Part II

It is well-known that the method of moments (MoM) [48] is one of the most important methods in

CEM because of its powerful ability in solving the integration equation of electromagnetic radiation and

scattering [52]. Like the numerical dispersion error analysis in finite element method (FEM) [53]-[54]

and finite difference in time domain (FDTD) [55], the MoM error analysis is an important topic in CEM

[56]-[61]. The error analysis of the MoM was performed with the error measure of current, boundary

condition, and scattering amplitude.

As mentioned by the researchers [56], the application of expansion and testing functions are one of

the most important factors contributing to MoM error. In fact, the various basis functions play important

roles in MoM. The application of the proper basis functions can facilitate the accurate and convenient

modeling of the complex electromagnetic problems [47], [62]-[64]. It is interesting to investigate the

error in projection of the equivalent current of plane wave using various basis functions [65]-[66]. The

projection error can serve as the reference for the MoM error analysis [56]. The study of the projection

error of the basis functions can indirectly demonstrate how the basis functions affect the accuracy of

MoM.

In Chapter 5, the projection error of various basis functions is investigated in details. The equivalent

current is expanded by various basis functions. Then application of the weighted residual method will
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yield the unknown coefficients of basis functions. After obtaining the coefficients, the projection error

can be found. The root mean square (RMS) error of current is used as the error measure since the

current is integrable. The numerical projection error of the triangular basis, the basis of their higher-

order version, and the divergence-conforming basis on rectangular and triangular elements are shown.

Furthermore, the closed forms of the projection error on the infinite meshes are derived. The basis

functions involved are pulse basis, triangular basis, the second-order basis in 1D case, the divergence-

conforming basis on rectangular element and the one-directional triangular element in 2D case. It is

found that the projection error of p-th order 1D basis is asymptotically inversely proportional to (p+1)-

th power of the density of unknowns. Based on the closed-form projection errors in 1D case, it is found

when the expansion basis is fixed, the application of different testing functions only affect the coefficient

of the projection error rather than the order. In addition, the error of divergence-conforming basis in

projection of curl-free vectors is generally less than that of divergence-free vectors. This is expected

since both the divergence-conforming basis and the expanded vector are with the same property, namely,

curl-free.
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CHAPTER 2 ANALYSIS OF WAVE PROPAGATION IN 2-D PERIODIC ARRAY OF

CONDUCTING OBJECTS IN FREE SPACE

The scattering and eignvalue problems for the periodic array of 2-D conducting objects have been

investigated by some researchers [19], [35]-[36], [67]-[68]. In this chapter, several approaches for mod-

eling of TMz wave propagation in 2-D structures are described. The implementation of the approaches

facilitates the provision of some numerical results to validate the proposed approaches in Chapters 3

and 4.

2.1 EM scattering from 2-D singly periodic array of PEC objects

2.1.1 Formulation

We assume the periodic PEC objects are infinitely long along z-axis. Figure 2.1 shows the infinite

periodic PEC cylinder array, whose period is PL along x-direction. The primitive lattice vector is

a1 = x̂PL. This array is located in free space. It is filled with the same media as the free space. One

unit can include multiple PEC objects, whose cross sections can be different. The incident plane wave

Einc = E0e−jk·ρ impinges on the array from free space. Its wave vector is given by k = x̂kx + ŷky,

where kx = −β0 cosφi, ky = −β0 sinφi, β0 = ω
√

µ0ε0, and φi are the incident angles. The case of

E-wave (TMz) is considered in this chapter.

According to the Floquet’s theorem, the current Jz satisfies

Jz(x + mPL, y) = Jz(x, y)e−jmkxPL . (2.1)

Jz(x, y) can be written as

Jz(x, y) = w(x, y)e−jkxx (2.2)
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Figure 2.1 Periodic PEC array with a period of PL along x-direction.

where w(x, y) is a periodic function of x and kx is the x-component of wave vector k = x̂kx + ŷky.

The Bloch condition points out Jz(x + PL, y) = Jz(x, y)e−jkxPL .

In view of the structure’s periodicity, the computational domain is restricted to one period of the

array. The electric field integral equation (EFIE) is given by [67]-[68]

jβη

∫

l
Jz(ρ′)Gpdl′ = E0 e−jk·ρ (2.3)

where

Gp =
1
4j

∞∑
m=−∞

H(2)
0

(
β
√

(x− x′ −mPL)2 + (y − y′)2
)

e−jmkxPL (2.4)

β is the wave number and H(2)
0 is the zeroth order Hankel function of the second kind. It is easy

to see that when ρ − ρ′ = x̂mPL, there exists the singularity in this spatial-domain form. When

(kx ± β)PL = 2nπ, one can apply the asymptotic form of Hankel function for the large argument to

find Gp is still singular. Here m and n are integers. In addition to the form in the spatial domain, Gp

can be represented in the spectral form [68]

Gp =
1

2PL

∞∑
m=−∞

1
γm

e−γm|y−y′|−jkxm(x−x′) (2.5)

where

kxm = kx +
2mπ

PL
, γm =

√
k2

xm − β2 (2.6)



www.manaraa.com

10

From the spectral form, one can also note that when ρ − ρ′ = x̂nPL or (kx ± β)PL = 2mπ, there

exists the singularity. The space-domain form of Gp has very slow convergence. The spectral-domain

form of Gp has exponential convergence rate. Let uy = y − y′. When |uy| is large, it converges fast.

However, when |uy| is small, its convergence is still very slow. For this case, Veysoglu’s transformation

can be applied to speed up the convergence of Gp [68]. Using Veysoglu’s transformation gives

Gp(x, y; x′, y′) =
∑
±

Gp± +
1
4j

H(2)
0 (β

√
(x− x′)2 + (y − y′)2) (2.7)

where

Gp±(x, y;x′, y′) =
1
π

e−j(±kx+β)PL±jβ(x−x′)
∫ ∞

0
f(±kx,±(x− x′), y − y′, u)du

f(kx, t1, t2, u) =
fn(t1, t2, u)
fd(kx, t1, u)

fn(t1, t2, u) = e−u2
cos

(
t2u

√
u2 + 2jβ(PL − t1)/(PL − t1)

)

fd(kx, t1, u) =
[
1− e−u2/(1−t1/PL)−j(kx+β)PL

] √
u2 + 2jβ(PL − t1)

The PEC boundary is discretized into linear elements. Using the pulse basis as the expansion function

and the point function as the testing function, one may obtain a set of equations about the coefficients

of the basis functions.

Zx = b (2.8)

where

Zmn = jβη

∫

ln

Gp(xm, ym; x′, y′)dl′

bm = E0 e−jk·ρm

(2.9)

ρm indicates the coordinate of the central point of the mth linear element. The integral in Zmn can be

approximated by

∫

ln

Gp(xm, ym;x′, y′)dl′ =





1
4j

{
1− j 2

π [ln γβln
4 − 1]

}
ln

+
∑
±Gp±(xm, ym; xn, yn)ln, m = n

Gp(xm, ym; xn, yn)ln, m 6= n

(2.10)

where γ ≈ 1.781072.
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The scattered field Es
z can be expressed as a superposition of the Floquet’s harmonics

Es
z =

∞∑
m=−∞

eme−jkxmxe−γmy (2.11)

The Floquet’s harmonics are orthogonal with each other over one period in x. Assume the reference

plane is located at y = y0. Thus,

∫ PL

x=0
Es

z(x, y0)ejkxmxdx = emPLe−γmy0 (2.12)

On the other hand, we can calculate the Es
z after obtaining the current on the PEC

Es
z = −jβη

∫

l
Jz(ρ′)Gpdl′ (2.13)

From (2.12) and (2.13), one obtains

em =
−jβηeγmy0

PL

∫ PL

x=0

∫

l
Jz(ρ′)Gp|y=y0dl′ejkxmxdx (2.14)

The reflection coefficient of the 0th harmonic is obtained by

R0 =
e0

E0
e−j2

√
β2−k2

xy0 (2.15)

2.1.2 Numerical results

To validate the implementation of the IE approach, several periodic structures are simulated. The

numerical results are compared with exact solution and those from the other approaches.

In the first example, the infinite PEC plate is simulated. The period of one cell is set to be PL = 0.3

m. The PEC plate is located at y = 0. The computational domain is confined to a straight line with

length L = 0.3 m along the x direction. The plane wave is obliquely incident on the PEC plate.

θi = 90o and φi = 30o. The electric field is along the z direction. The straight line is discretized into

41 linear elements. Figure 2.2 shows the current distribution on the PEC plate at f = 0.3 GHz. The

current is normalized by E0. Figure 2.3 shows the reflection coefficients R0 as a function of the electric

size of one period PL. From these two figures, good agreements can be observed between the numerical

results and exact solution.

The second example is to simulate the PEC gratings. The period of one cell is set to be PL = 0.3

m. The straight line is with length L = 0.15 m along the x direction. The plane wave is normally
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Figure 2.2 Current distribution on the infinite PEC plate at f = 0.3 GHz. L = PL = 0.3 m. θi = 90o

and φi = 30o.
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Figure 2.3 Reflection coefficient R0 of the infinite PEC plate. L = PL = 0.3 m. θi = 90o and
φi = 30o.
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incident on the PEC plate, i.e., θi = 90o and φi = 90o. Figure 2.4 shows the reflection coefficient of

the gratings.

0.2 0.4 0.6 0.8
0.5

0.6

0.7

0.8

0.9

1

P
L
/λ

0

|R
0|

 

 

IE
Peterson et al.

Figure 2.4 Reflection coefficient R0 of the gratings. L = 0.15 m and PL = 0.3 m. θi = 90o and
φi = 90o. The circle indicates the results taken from [67].

The third example is to simulate the periodic array of PEC circular cylinders. The radius of the

circle is R = 0.06 m and PL = 0.4 m. The plane wave is normally incident on the cylinders. Figure

2.5 shows the reflection coefficient of the periodic array of PEC circular cylinders.

2.2 Eigenvalue problem of doubly-periodic PEC structure

2.2.1 Formulation

Assume a1 and a2 are the primitive lattice vectors for the doubly-periodic structure. The reciprocal

primitive lattice vectors b1 and b2 can be obtained by

b1 =
2π

Ω
a2 × ẑ

b2 =
2π

Ω
ẑ × a1

(2.16)



www.manaraa.com

14

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

P
L
/λ

0

|R
0|2

 

 

IE
T−Matrix, Kushta et al.

Figure 2.5 Reflection coefficient R0 of the array of PEC circular cylinders. R = 0.06 m and PL = 0.4
m. θi = 90o and φi = 90o. The dot indicates the results taken from [35].

where Ω = |a1 × a2|.
The relations between primitive and reciprocal lattice vectors are

am · bn = 2πδmn (2.17)

where δmn is the Kronecker delta function.

The pseudo-periodic Green’s function Φp for the doubly-periodic structure satisfies

∇2Φp + β2Φp = −
∑

I

δ(u− ρI)e−jk·ρI (2.18)

where u = ρ− ρ′, ρI = I1a1 + I2a2, and I = (I1, I2).

The Poisson’s summation formula is

∑

I

f(u− ρI)e−jk·ρI =
∑

J

1
Ω

F (k + κJ)e−j(k+κJ)·u (2.19)

where κJ = J1b1 + J2b2, J = (J1, J2), and F (k) is the 2-D Fourier transform of f(ρ). Applying the



www.manaraa.com

15

Poisson’s summation formula, the right-hand side of (2.18) can be transformed into

−
∑

I

δ(u− ρI)e−jk·ρI = −
∑

J

1
Ω

e−j(k+κJ)·u (2.20)

In terms of the Floquet’s theorem, the pseudo-periodic Green’s function can be expanded into the Flo-

quet’s modes

Φp(u) =
∑

J

CJe−j(k+κJ)·u (2.21)

Substitution of (2.21) and (2.20) into (2.18) yields

CJ =
1

Ω(|k + κJ|2 − β2)
(2.22)

Thus, Φp(u) is represented by

Φp(u) =
1
Ω

∑

J

e−j(k+κJ)·u

|k + κJ|2 − β2
(2.23)

In addition to (2.23), Φp has the other two forms, namely, the form in the spatial domain

Φp(u) =
1
4j

∑

I

H(2)
0 (β|u− ρI|)e−jk·ρI (2.24)

and the form in the spectral domain [19]

Φp(u) = ΦH + ΓΦ (2.25)

where

ΦH =
1

2|a1|
∑

n

e−jkn,‖·u

γn
· e−γn|u⊥|

ΓΦ =
1

2|a1|
∑

n

e−jkn,‖·u

γn
·
∑
±

e−γn(|a2⊥|∓u⊥)
e|a2⊥|±jkn,⊥ − e−|a2⊥|γn

(2.26)

γn =
√
|kn,‖|2 − β2, kn = k+ nb1, kn,‖ is the projection of kn onto a1 direction. kn,⊥, a2,⊥, and u⊥

are the projections of kn, a2, and u onto a unit vector normal to a1, respectively.

The form in the spatial domain converges very slowly. The form in the spectral domain has fast

convergence when |u⊥| is large. When |u⊥| is small, ΦH converges slowly. The acceleration technique

for Gp can be applied to speed up the convergence of ΦH .
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In [19], the following auxiliary differential-integral system are proposed, which has the same band

structure as the 2-D metallic crystal.

∇2φ + β2(φ +
∫

C
wΦpds′) = 0 (2.27)

φ(ρ) +
∫

C
w(ρ′)Φp(ρ, ρ′)dl′ = 0, ρ ∈ C (2.28)

where C is the boundary of the PEC object. It has been proved in [19] that he auxiliary function φ has

the continuous derivatives up to the second order in the unit cell. This is why the plane-wave expansion

of φ converges fast. Ez is related to the auxiliary function φ by

Ez(ρ) = φ(ρ) +
∫

C
w(ρ′)Φp(ρ, ρ′)dl′ (2.29)

Φp is the pseudo-periodic function at β = 0, and φ can be expanded into the Floquet’s modes

φ(ρ) =
∑

J

cJgJ(ρ) (2.30)

where

gJ(ρ) =
1√
Ω

e−j(k+κJ)·ρ (2.31)

gJ is with the orthogonality over the unit cell Ω

∫

Ω
gJ1(ρ)g∗J2

(ρ)ds = δJ1J2 (2.32)

Substituting (2.30) into (2.27), multiplying gJ on both sides of (2.27), and integrating over Ω, one

obtains

(β2 − |k + κJ|2)cJ +
β2

|k + κJ|2
∫

C
w(ρ′)g∗J(ρ′)dl′ = 0 (2.33)

Thus,
1

|k + κJ|2 cJ +
1

|k + κJ|4
∫

C
w(ρ′)g∗J(ρ′)dl′ =

1
β2

cJ (2.34)

Substituting (2.30) into (2.28) and using the point-matching method, one can obtain

w = −A−1
3 A4c (2.35)

where

c =
[

c1 . . . cs . . . cS

]T

(2.36)
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w =
[

w1 . . . wr . . . wR

]T

(2.37)

A4 =




g1(ρ1) · · · gS(ρ1)
...

. . .
...

g1(ρR) · · · gS(ρR)




R×S

(2.38)

A3 =




∫
l1

Φp(ρ1, ρ
′)dl′ · · · ∫

lR
Φp(ρ1, ρ

′)dl′

...
. . .

...
∫
l1

Φp(ρR,ρ′)dl′ · · · ∫
lR

Φp(ρR, ρ′)dl′




R×R

(2.39)

The index r in wr and ρr corresponds to the rth point function, and s in cs and gs corresponds

to the sth Floquet’s mode. R and S are the number of the pulse basis functions and Floquet’s modes,

respectively. Discretizing (2.34) and applying (2.35) yields

(A1 −A2A−1
3 A4)c =

1
β2

c (2.40)

where

A1 =




1
|k+κ1|2

. . .

1
|k+κS |2




S×S

(2.41)

A2 =




1
|k+κ1|4

∫
l1

g∗1(ρ1)dl · · · 1
|k+κ1|4

∫
lR

g∗1(ρ1)dl

...
. . .

...

1
|k+κS |4

∫
l1

g∗S(ρ1)dl · · · 1
|k+κS |4

∫
lR

g∗S(ρ1)dl




S×R

(2.42)

(2.40) is a standard eigensystem with the eigenvalues of 1
β2 . The subroutines from Netlib are employed

for solving this eigenvalue problem. The LZ algorithm is applied in the subroutines.

2.2.2 Numerical results

In this example, the circular PEC cylinder in the square unit cell is simulated. Their geometrical

centers coincide with each other. a1 = x̂a and a2 = ŷa. The radius of the cylinder is R = 0.26a.

Figure 2.6 shows the band structure, i.e., k − β diagram.
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Figure 2.6 Band structure of a doubly periodic array of PEC circular cylinders. R = 0.26a. The circle
indicates the results taken from [19].
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CHAPTER 3 INTEGRAL EQUATION ANALYSIS OF SCATTERING FROM

MULTILAYERED PERIODIC ARRAY USING EQUIVALENCE PRINCIPLE AND

CONNECTION SCHEME

Recently, the domain decomposition method (DDM) has attracted much attention from the society

of computational electromagnetics because of its potential capability and advantages in solving electri-

cally large problems with complex structures. It is natural to apply the DDM to differential equation

methods, such as the finite element (FE) [69]-[71] and finite-difference (FD) methods [72]. In addition,

DDM also can be employed via the integral equation (IE) method with the aid of the equivalence prin-

ciple [45]-[46], [73]-[75]. Specially, the integral equation method using periodic boundary condition

and a connection scheme is used for modeling of multilayered lossy periodic structures in [44]. This

approach can handle the case of the metallic patches at the interface between layers or on the periodic

boundary.

In this chapter, an IE approach is developed to investigate the frequency response of a singly-

periodic array. By the application of the equivalence principle algorithm and connection scheme (EPACS),

the case of the periodic array filled with different media in different layers can be treated [44]. The com-

putational domain first is restricted to one period of the multilayered array. In one period, each layer

can be treated as an individual cell. Then, the equivalence principle can be applied separately to each

individual cell to obtain the integral equations for equivalent currents on the outside boundary of the

cell and the perfect electric conductor (PEC) surface. In general, when the cells are not overlapping or

connected with each other, it is necessary to build up the relationship between them by applying IE to

their outside boundary [46]. However, for the multilayered periodic structure, two neighboring cells are

connected via the same interface. Thus, by combining the periodic boundary condition (PBC) with the

connection scheme, the relationship can be established between the currents or fields on the topmost and
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bottommost surfaces. Finally, two integral equations on the topmost and bottommost surfaces, which

involve the periodic Green’s function, are required to establish the complete equation system. After

seeking the solution of equivalent currents on the topmost and bottommost surfaces, the proper way is

proposed to correctly calculate the current on the surface of PEC object.

Moreover, based on EPACS, an effective approach is proposed to handle the semi-infinitely layered

case in which one unit consisting of several layers is repeated infinitely along one direction. Each

unit can be regarded as a two-port network. For this semi-infinitely layered array, the impedance matrix

representing the relationship between the equivalent magnetic and electric currents on the top surface of

each unit should be identical because the network is infinitely extended when one looks into it from the

top surface of any unit. Based on this fact, the equation for this impedance matrix can be established by

EPACS and solved using a proper iterative method. After obtaining the impedance matrix, the integral

equation on the topmost surface is required to construct the complete system of equations for solving

the fields or currents on the top surfaces. Then the reflection coefficients of Floquet’s harmonics can

be found. It should be mentioned that the direct IE approach definitely cannot handle the case of semi-

infinitely layered array since the number of unknowns for the direct IE approach will be infinite. Finally,

numerical results are given to verify the proposed approaches.
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Figure 3.1 Multilayered infinitely periodic PEC array with a period of PL along x-direction.
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3.1 Formulation

In this chapter, a 2-D scattering problem is considered. The scatterers are assumed to be infinitely

long along z-direction. Figure 3.1 shows the N -layer infinite periodic PEC cylinder array, whose period

is PL along x-direction. This array is located in free space. It is filled with different media with relative

permittivity εri and permeability µri in different layers (i = 1, 2, · · · , N ). εri and µri can be complex

numbers. The PEC objects are buried inside the media and their cross section may vary from layer to

layer. The incident plane wave Einc = E0e−jk·ρ impinges on the array from free space. Its wave vector

is given by k = x̂kx + ŷky, where kx = −β0 cosφi, ky = −β0 sinφi, β0 = ω
√

µ0ε0, and φi are the

incident angles.

3.1.1 Multilayered array of PEC

 

 

 

Cell 1 

Cell 2 

Cell N 

 

 

 

  

 

 

 

��  ��  ��  ��  ��  ��  

Figure 3.2 Cells in each layer.

Because the array is infinitely periodic along x-direction, one may consider just one cell in each

layer shown in Figure 3.2. In this work, the TMz case is considered. Without loss of generality, the

integral equation is applied to Cell 1 shown in Figure 3.3. Assume Eo1 and Jo1 are the electric field
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and current on the interior side of outer surface Co, respectively. Eo1 includes El1, Er1, Et1, and

Eb1. Jo1 includes Jl1, Jr1, Jt1 and Jb1 . Ji1 is the electric current on the inner surface Ci (i.e. PEC

surface), as shown in Figure 3.3. A problem equivalent to the original problem internal to Co can be

set up as follows. Let the original field exists internal to Co with the original medium, and null field

exists external to Co with the same medium as the original one internal to Co. To support this field, the

equivalent magnetic and electric currents (M = τ̂Ez , J = ẑJz) must exist on Co. Hence, the electric

field integral equations (EFIE) can be found

−1
2
Eo1 + jβ1η1(Azo −Azi) +−

∫

Co

Eo1
∂G1

∂n′
dl′ = 0, on Co

jβ1η1(Azo −Azi) +
∫

Co

Eo1
∂G1

∂n′
dl′ = 0, on Ci

(3.1)

where

Azo =
∫

Co

Jo1(l′)G1(ρ, ρ′)dl′

Azi =
∫

Ci

Ji1(l′)G1(ρ, ρ′)dl′

∂G1

∂n′
= (t̂× ẑ) · ∇G1

G1(ρ, ρ′) =
H(2)

0 (β1R)
4j

R = |ρ − ρ′|, β1 = β0
√

µr1εr1.

 

Cell 1 

��  ��  ��  
��  

��  ��  

��  ��  

��  

�  �  

Figure 3.3 Unknown field and current on the interior side of the outer surface Co and inner surface Ci

of Cell 1.
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Because the relative permittivity and permeability in the Green’s function can be complex numbers,

the present approach can handle the case where the media in each layer are lossy. Then, discretization

of the integral equations yields

0 = AEoEoEo1 + AEoJoJo1 −AEoJiJi1 (3.2)

on Co and

0 = AJiEoEo1 + AJiJoJo1 −AJiJiJi1 (3.3)

on Ci. Assume the dimension of Eo1, Jo1, and Ji1 to be N1 × 1, N1 × 1, and N2 × 1, respectively.

AEoEo , AEoJo , AEoJi , AJiEo , AJiJo , and AJiJi are matrices with the dimensions N1 ×N1, N1 ×N1,

N1 × N2, N2 × N1, N2 × N1, and N2 × N2, respectively. Then, the unknowns Ji1 on Ci can be

eliminated and the information on Ci can be transferred to the outer surface Co. From (3.3), one can

get

Ji1 = A−1
JiJi

(AJiEoEo1 + AJiJoJo1) (3.4)

Substituting (3.4) into (3.2) yields,

TEo1 = SJo1 (3.5)

where

T = −AEoJiA
−1
JiJi

AJiEo + AEoEo

S = AEoJiA
−1
JiJi

AJiJo −AEoJo

In order to obtain the relationship between the top and bottom surfaces, the unknowns on the left

and right sides of the cell have to be eliminated by applying the periodic boundary condition

Er1 = El1e
−jkxPL

Jr1 = −Jl1e
−jkxPL

(3.6)

Through the matrix manipulation, one can obtain



Et1

Eb1


 = R(1)




Jt1

Jb1


 (3.7)
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where R(1) can be rewritten as

R(1) =




R
(1)
11 R

(1)
12

R
(1)
21 R

(1)
22


 (3.8)

The details for derivation of R(1) are given in Appendix A. In a similar manner, for layer i + 1, one can

obtain 


Et(i+1)

Eb(i+1)


 = R(i+1)




Jt(i+1)

Jb(i+1)


 (3.9)

where R(i+1) is found by replacing εr1 and µr1 with εr(i+1) and µr(i+1). If each layer is identical, it

holds that R(i+1) = R(1) ( i = 1, · · · , N − 1 ), which indicates that one can save CPU time for creating

R(i+1).

In the next step, the connection scheme will be applied to eliminate the unknowns between Layer 1

and Layer N . From (3.7), one gets the initial relationship



Et1

Eb1


 = A(1)




Jt1

Jb1


 (3.10)

where

A(1) = R(1)

Assume the following relationship has been found between Layer 1 and Layer i (1 ≤ i ≤ N − 1)



Et1

Ebi


 = A(i)




Jt1

Jbi


 (3.11)

where

A(i) =




A
(i)
11 A

(i)
12

A
(i)
21 A

(i)
22




Combining (3.9) and (3.11) and using the boundary condition of continuity of the tangential field



Ebi

Jbi


 =




Et(i+1)

−Jt(i+1)


 (3.12)

one can get the relationship between Layer 1 and Layer i + 1



Et1

Eb(i+1)


 = A(i+1)




Jt1

Jb(i+1)


 (3.13)
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where

A(i+1) =




A
(i)
11 −A

(i)
12 (A(i)

22 + R
(i+1)
11 )−1A

(i)
21 A

(i)
12 (A(i)

22 + R
(i+1)
11 )−1R

(i+1)
12

R
(i+1)
21 (A(i)

22 + R
(i+1)
11 )−1A

(i)
21 R

(i+1)
22 −R

(i+1)
21 (A(i)

22 + R
(i+1)
11 )−1R

(i+1)
12


 (3.14)

Thus, one can recursively find the relationship between Layer 1 and Layer N by using (3.14)



Et1

EbN


 = A(N)




Jt1

JbN


 (3.15)

It should be noted that if each layer is identical, the logarithm algorithm can be applied to speed up the

procedure for finding A(N). For N = 2L0 , the N -time process of applying the connection scheme can

be reduced to that of L0 times by replacing R(i+1) with A(i) in (3.14).

In addition to (3.15), two more conditions are required to solve the scattering problem. On the top

surface of Layer 1, the following equation holds

Einc
z =

1
2
Ez + jβ0η0

∫
Jz(l′)Gpdl′ (3.16)

where

Gp =
∑

M

H
(2)
0 (β0|ρ− ρ′ − x̂MPL|)

4j
e−jkxMPL

since ∂Gp

∂n = 0 for the flat surface, −
∫

Ez(l′)
∂Gp

∂n dl′ is dropped. Gp is the periodic Green’s function in

free space, and can be efficiently and accurately calculated by using Veysoglu’s transformation or the

other transformations [67], [68]. Discretization of (3.16) yields

Einc = AEt1Et1Et1 + AEt1Jt1Jt1 (3.17)

And on the bottom surface of Layer N ,

0 =
1
2
Ez + jβ0η0

∫
Jz(l′)Gpdl′ (3.18)

Discretization of (3.18) yields

0 = AEbNEbN
EbN + AEbNJbN

JbN (3.19)

Actually, (3.16) and (3.18) are obtained by setting up the problems equivalent to the original prob-

lem above the topmost surface and below the bottommost surface, respectively. Because there is no
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source exciting the incident field in the region below the bottom surface of Layer N , no incident field

contributes to the total field in (3.18).

Combining (3.15), (3.17), and (3.19) yields

C

[
Et1 EbN Jt1 JbN

]T

=
[

Einc 0 0 0

]T

(3.20)

where

C =




AEt1Et1 0 AEt1Jt1 0

0 AEbNEbN
0 AEbNJbN

I 0 −A
(N)
11 −A

(N)
12

0 I −A
(N)
21 −A

(N)
22




Moreover, the formulations are applicable to the case in which there is no PEC object inside the cell

through just replacing T and S in (3.5) by

T = AEoEo

S = −AEoJo

(3.21)

After solving (3.20), the other fields and currents of all the cells can be calculated. There are two

ways to attempt this. The first one is to get Eb1 and Jb1 by using (3.7) since Et1 and Jt1 have been

found. Similarly one can obtain Ebi and Jbi (1 < i < N ) layer by layer from the top to bottom with

the aid of (3.12) and (3.9). Unfortunately, the condition number of R
(1)
12 is extremely large so that one

cannot accurately calculate the inverse of R
(1)
12 which is required to solve (3.7) for Eb1 and Jb1. Thus,

one should abandon the first way and consider the other way. In fact, during the procedure of achieving

(3.13), one can find 


Ebi

Jbi


 = B(i)




Jt1

Jb(i+1)


 (3.22)

where

B(i) =




(
I −A

(i)
22 (A(i)

22 + R
(i+1)
11 )−1

)
A

(i)
21 A

(i)
22 (A(i)

22 + R
(i+1)
11 )−1R

(i+1)
12

−(A(i)
22 + R

(i+1)
11 )−1A

(i)
21 (A(i)

22 + R
(i+1)
11 )−1R

(i+1)
12


 (3.23)

Because Jt1 and JbN are known from (3.20), one can obtain recursively Ebi and Jbi from the bottom to

top by using (3.22). For Cell 1, El1, Er1, Jl1, and Jr1 are obtained through (A.4) (in Appendix A) and
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(3.6). Then one can find the current Ji1 on the PEC by using (3.4). In the same manner, the current on

the PEC of the other cells can be found. Numerical results will be shown to verify the second way.

3.1.2 Semi-infinitely layered array of PEC

Assume a unit consisting of N0 (N0 ≥ 1) layers is repeated infinitely along−ŷ direction. Each unit

must be identical to the other units. However, it is unnecessary for each layer to be the same in one

unit. Each unit can be regarded as a two-port network and the semi-infinitely layered array is equivalent

to the connection of infinite number of two-port networks. For this semi-infinitely layered array, the

impedance matrix representing the relationship between the equivalent magnetic and electric currents

on the top surface of each unit should be identical because the network is infinitely extended when one

looks into it from the top surface of any unit. Let P0 denote each of these impedance matrices. Thus,

by using the tangential continuity condition one obtains

Et1 = P0Jt1

EbN0 = −P0JbN0

(3.24)

On the other hand, as discussed in the above subsection, by using EPACS one gets



Et1

EbN0


 =




A
(N0)
11 A

(N0)
12

A
(N0)
21 A

(N0)
22







Jt1

JbN0


 (3.25)

where A(N0) can be obtained by making use of (3.14) or (3.10). Using the second set of equations from

both (3.25) and (3.24), one can get

JbN0 = −(P0 + A
(N0)
22 )−1A

(N0)
21 Jt1 (3.26)

Substitution of (3.26) into the first set of (3.25) gives

Et1 = [A(N0)
11 −A

(N0)
12 (P0 + A

(N0)
22 )−1A

(N0)
21 ]Jt1 (3.27)

Comparing (3.27) with the first set of (3.24), one can achieve

P0 = A
(N0)
11 −A

(N0)
12 (P0 + A

(N0)
22 )−1A

(N0)
21 (3.28)
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(3.28) is an equation for unknown matrix P0. It is impossible to find the explicit solution for P0.

However, it can be solved by using the iterative procedure

Xn+1 = Xn + α[Xn − f(Xn)] (3.29)

where α is a relaxation factor, and X is a matrix to be determined, which satisfies X = f(X). Com-

bining (3.17) and the first set of (3.24) gives the complete system of equations



AEt1Et1 AEt1Jt1

I −P0







Et1

Jt1


 =




Einc

0


 (3.30)

After obtaining Et1 and Jt1, one can find Eb1 and Jb1 by using (3.24) and (3.26). Following the

procedure similar to that for multilayered array, El1, Er1, Jl1, and Jr1 are obtained and then Ji1 can be

found. In the same manner, one can find the current on PEC surface of the other cells starting from top

and going downwards.

Similarly, this approach is applicable to the semi-infinitely layered array without PEC objects inside

each layer by means of (3.21).

3.1.3 Floquet’s harmonics of scattered fields

The reflection coefficient of Floquet’s harmonics can be found after seeking the solution to the

integral equation. In this subsection, the expression for the reflection coefficient will be given.

The scattered field Es
z can be expressed as a superposition of Floquet’s harmonics [4]

Es
z =

∞∑
m=−∞

eme−jkxmxe−
√

k2
xm−β2

0y, y > y0 (3.31)

where kxm = kx + 2mπ/PL. Here y0 is the y-coordinate of the top surface of Cell 1. The Floquet’s

harmonics are orthogonal to each other over one period along the x direction. Assume the reference

plane is located at y = y0. Thus,

∫ PL

x=0
Es

z(x, y0)ejkxmxdx = emPLe−
√

k2
xm−β2

0y0 (3.32)

On the other hand, Es
z is given in terms of Ez and Jz on the top surface of Cell 1

Es
z =

1
2
Ez − jβ0η0

∫

l
Jz(ρ′)Gpdl′ (3.33)
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From (3.32) and (3.33), one gets

em =
e
√

k2
xm−β2

0y0

PL

∫ PL

x=0

[
−jβ0η0

∫

l
Jz(ρ′)Gp|y=y0dl′ +

1
2
Ez

]
ejkxmxdx (3.34)

In terms of the definition of scattering matrix in [4], the reflection coefficient of the zeroth propagating

harmonic can be expressed by

R0 =
e0

E0
e−j2

√
β2
0−k2

xy0 (3.35)

When there are no PEC objects inside each layer, the scattering problem reduces to that of reflection

of incident wave from multilayered media. For this case, only zeroth harmonics exists, and R0 is the

reflection coefficient of the incident wave from the planar boundary of infinitely extended media. Ez

and Jz in (3.34) have been found through (3.20) and (3.30) for cases of multilayered and semi-infinitely

layered array, respectively.

3.2 Numerical results

3.2.1 Multilayered periodic array

In the following examples, each cell is assumed to be square. In the first example, we consider a

PEC object that is a circular cylinder with the radius R = 0.15PL. All layers are identical with medium

of free space. Here the point matching and pulse basis function are applied to obtain the numerical

results. The TM wave is incident normally. The numerical results can be found alternatively by directly

solving the EFIE applied on the PEC surface [4], which does not involve the equivalence principle

and connection scheme. The direct IE approach employs the periodic Green’s function instead of the

free-space Green’s function. The number of elements are 80 and 40 for outside boundary and the PEC

surface, respectively. In the direct IE approach, 40 elements are applied to each PEC object surface.

Figures 3.4 and 3.5 show the power reflection coefficient of the zeroth Floquet’s harmonic for the

one-layer and four-layer cases, respectively. The Fortran program, which is used to calculate the power

reflection coefficient, is run on a PC with a 3.2 GHz processor. The CPU time is about 1.5 seconds for

each frequency point. There is a good agreement between results from the present approach, and the

direct IE and the T-matrix approaches for the one-layer case. Also, the good agreement can be observed

between results from the present approach and the direct IE approach for the four-layer case.
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Figure 3.4 Power reflection coefficient of the zeroth Floquet’s harmonic of 1-layer array of circular
PEC cylinder. R = 0.15PL, εr1 = 1, and µr1 = 1. The results of the T-matrix method are
taken from [35].
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Figure 3.5 Power reflection coefficient of the zeroth Floquet’s harmonic of 4-layer array. R = 0.15PL,
εri = 1, and µri = 1 (i = 1, · · · , 4).
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Figure 3.6 Current distribution on circular PEC cylinders of a four-layer array. R = 0.15PL and
PL = 0.4λ0. εri = 1, and µri = 1 (i = 1, · · · , 4).

Figures 3.6 and 3.7 show the current distribution on PEC surface of the four-layer array at PL =

0.4λ0 and 0.9λ0, respectively. φ is the polar angle about the respective circle center. The results agree

well with that of direct IE approach. As shown in Figure 3.5, most of energy is reflected at PL = 0.4λ0,

and thus wave can hardly pass through the array. Therefore, the induced current on PEC decreases as

the layer index increases. By contrast, the current does not decrease as the layer index increasing at

PL = 0.9λ0 since this frequency point is within the passband.

The second example is the three-layer array filled with a lossy medium but without PEC objects

inside the cell. Figure 3.8 shows the reflection coefficient of the zeroth Floquet’s harmonic R0 for

the three-layer array without PEC object inside. The medium in each layer is lossy. εr1 = 1 − j0.2,

εr2 = 2− j0.2, εr3 = 4− j0.2, µr1 = 1, µr2 = 2, and µr3 = 1. The CPU time is about 2.0 seconds for

each frequency point. There is a good agreement between results from the proposed approach and the

analytical solutions. Figure 3.9 shows |R0|2 for the same array with and without the circular PEC object

of R = 0.15PL. Compared with the array without PEC, the array with PEC has the larger reflection at

lower frequencies. The PEC objects inside the array play important roles in changing the reflection at
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Figure 3.7 Current distribution on circular PEC cylinders of a four-layer array. R = 0.15PL and
PL = 0.9λ0. εri = 1, and µri = 1 (i = 1, · · · , 4).
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Figure 3.8 Reflection coefficient R0 of three-layer media. εr1 = 1 − j0.2, εr2 = 2 − j0.2,
εr3 = 4− j0.2, µr1 = 1, µr2 = 2, and µr3 = 1.
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lower frequencies.
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Figure 3.9 Power reflection coefficient |R0|2 of three-layer media and periodic circular PEC array.
R = 0.15PL, εr1 = 1 − j0.2, εr2 = 2 − j0.2, εr3 = 4 − j0.2, µr1 = 1, µr2 = 2, and
µr3 = 1.

Figure 3.10 shows the reflection coefficient of a PEC array with 64 identical layers. Each layer

has εr = 2 − j0.2 and µr = 2. As shown in this figure, using logarithm algorithm leads to little

change in R0 compared to the scheme without the logarithm algorithm. Thus, it is stable to use the

logarithm algorithm for the solution of R0. Figure 3.11 gives a whole picture for the average CPU time

per frequency point versus the number of layers. The CPU time for each connection is short because

the number of unknowns for each cell is small. Hence, CPU time does not change too much as the

number of layers increases for both schemes with and without the logarithm algorithm. However, for

the three-dimensional (3-D) case, the number of unknowns for each cell will increase significantly. In

this situation, the logarithm algorithm is expected to play an important role in reducing the CPU time

when the number of layers is large.

The integral equation is locally applied to each cell. When N is large, the total CPU time is mainly

for constructing R(i) (i is from 1 to N ) since the part of CPU time for connection of matrix is negligible.
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Figure 3.10 Reflection coefficient R0 of PEC array with 64 identical layers. R = 0.15PL,
εr = 2− j0.2 and µr = 2.
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Thus, the CPU time increases linearly with the number of layers. If each layer is identical (indicating

R(i) = R(1)), the CPU time is just for constructing R(1) and so independent of N . Thus, one can

significantly save the CPU time. Furthermore, the times of connection will be reduced from N − 1

to log2N . However, if the integral equation is applied directly to N PEC objects, the computational

complexity is O(N3) without application of the fast algorithm. Thus, the present approach has com-

putational advantages over the direct IE approach when N is large. In addition, when N is large, the

memory requirement for the present approach is also much smaller than that for direct IE approach.
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Figure 3.11 Average CPU time per frequency point versus number of layers. R = 0.15PL,
εr = 2− j0.2 and µr = 2.

3.2.2 Semi-infinitely layered periodical array

Before a solution of reflection coefficient of semi-infinitely layered array can be found, it is inter-

esting and necessary to investigate the convergence of P0. In the following example, the unit being

repeated infinitely consists of one layer, namely, N0 = 1. The cell corresponding to each layer is

square. The PEC object with radius 0.15PL is located at the center of the cell. The media inside each
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Figure 3.12 Convergence of P0 with and without circular PEC cylinder. εr = 4− j0.2 and µr = 2.
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Figure 3.13 Reflection coefficient R0 of semi-infinitely layered array without PEC object.
εr = 4− j0.2 and µr = 2.
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Figure 3.14 Reflection coefficient R0 of semi-infinitely layered and multilayered array of circular PEC
cylinder. R = 0.15PL, εr = 4− j0.2, and µr = 2.
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cell has εr = 4 − j0.2 and µr = 2. The initial value of elements in P0 is set to 1.0, and the relaxation

factor is set to α = −0.1. Figure 3.12 shows a good convergence of P0 for PL = 0.4λ0. The relative

error is defined as

Error =
max

i,j
(|Pn+1

0(i,j) − Pn
0(i,j)|)

max
i,j

(|Pn+1
0(i,j)|)

(3.36)

It is worth pointing out that the convergence of P0 may suffer from the resonance problem of inte-

gral equation if the media filled in the cells are lossless. The promising remedy is the application of

combined field integral equation (CFIE) [76], which will be investigated in our future work.

In addition, Figure 3.13 shows the reflection coefficient of semi-infinitely layered array without PEC

objects. There is a good agreement between the results from the proposed methods and the analytical

solution. Finally, the reflection coefficient for the semi-infinitely layered array with PEC objects is

calculated and compared with that for one-layer, two-layer, and four-layer circular PEC cylinder array.

The average CPU time for each frequency point is about 2.2 and 2.4 seconds for the cases with and

without PEC objects, respectively. The memory requirement is about 6 MB. Because the media are

lossy, when the number of layer increases, the solution should converge to that of the semi-infinitely

layered array. Figure 3.14 shows the convergence of the reflection coefficient. When the array has four

layers, the results are very close to that of the semi-infinitely layered array.
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CHAPTER 4 INTEGRAL-EQUATION ANALYSIS OF SCATTERING FROM

DOUBLY PERIODIC ARRAY OF 3-D CONDUCTING OBJECTS

In this chapter, the electric field integral equation (EFIE) formulation in the spatial domain is em-

ployed to calculate scattering from the doubly periodic array of PEC objects. The following three issues

about the IE approach are addressed [83].

First, the special testing and basis functions are proposed to handle the problem with non-zero

normal components of currents at the boundary of one period. As we know, the computational domain

for periodic structures is restricted to one period. The objects with periodicity may be truncated by the

four-side periodic boundaries (PB). In this case, the electric current flowing out of the boundary of the

PEC surface may not be zero. If one adopts the Rao-Wilton-Glission (RWG) basis functions [47] to

expand the current, and treat the boundary in the manner which is applied to single PEC plate, namely,

does not assign unknowns on the boundary, the solution to the current will be probably inaccurate or

even wrong. This is because this procedure enforces the condition of zero outgoing current on the

truncated boundary of PEC. In our work, the special test and basis functions on the truncated boundary

are proposed to handle this problem.

Second, the relationship is addressed between the scattering from the PEC screen with periodicity

and its complementary structure. The Babinet’s principle for this dual problem has been proved in sev-

eral different ways [48]-[50]. This chapter shows a simple way for proof of the Babinet’s principle for

periodic structures. The proof involves the IE formulation and periodic Green’s function. In addition,

the relationship for the reflection and transmission coefficients between the PEC screen with periodicity

and its complementary structure will be derived using the IE approach. It should be mentioned that this

relationship also can be obtained from Babinet’s principle [51]. For periodic apertures perforated from

the screen, one can apply integral equations about the electric current on the PEC part of the screen.
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However, the unknown density near the aperture should be made large enough to achieve the accurate

solution for the scattering. In contrast, it will be easier to achieve the convergence of solution if one

solves the integral equation for the electric current on PEC patches in its dual problem. Then one may

find the solution for scattering from the apertures using the relationship mentioned.

Finally, the acceleration technique in [40] is applied to evaluate the PGF. It has exponential conver-

gence rate and can be implemented easily. One can take advantage of the intrinsic function in Fortran

to evaluate the error function involved in [40] since its argument can be real number. The formulations

in this technique are appropriately modified so that the new form facilitates numerical calculation for

the general cases. Therefore, there will exist no obstacles to effectively evaluate the matrix element of

the IE approach.

4.1 Formulation

Einc 

o 

y z 

x 

a2 

a1 

Figure 4.1 Unit cell including the 3-D PEC object in a skew 2-D lattice.

Figure 4.1 shows the unit cell including the 3-D PEC object in a skew 2-D lattice. a1 and a2

are the primitive lattice vectors in the xy-plane. Without loss of generality, let (a1 × a2) · ẑ > 0.

Einc = (θ̂ cosα + φ̂ sinα)E0exp(−jβk̂ · r) is the incident electric field. α is the polarization angle.

k̂ = −(x̂ sin θi cosφi + ŷ sin θi sinφi + ẑ cos θi) and β = ω
√

µε. The incident plane wave of θ-

polarization (α = 0o) and φ-polarization (α = 90o) are the 0th-order TMz and TEz Floquet’s modes,
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respectively. Here, TMz (TEz) indicates the magnetic (electric) field transverse to z-direction.

4.1.1 Basis and testing functions and EFIE matrix equation

The EFIE is based on the boundary condition that the total tangential electric field on the PEC

objects is zero. It is expressed as [77]-[78]

jωµ

[∫
[Js(r′) +

1
β2
∇′ · Js(r′)∇]Gp(r, r′)ds′

]

t

= Einc
t (4.1)

where Gp is a doubly periodic Green’s function. The basis functions on triangular elements are em-

ployed to discretize the electric current. After using the method of moments (MoM), one can obtain

the current on the PEC object in one unit cell. Then, the current in the other unit cells can be found

by using the Floquet’s theorem. The PEC surface is discretized into triangular elements. As shown in

Fig. 4.2, there are three types of edges on triangular elements: (1). inside the domain enclosed by the

periodic boundary; (2). on periodic boundary C1 and C2; (3). on periodic boundary C3 and C4. For

the first type of edges, the RWG basis functions [47] are adopted to be both basis functions and testing

functions

B(1) =





ρ+
1

l1
2A+

1

, r ∈ E+
1

ρ−1
l1

2A−1
, r ∈ E−

1

, T(1) = B(1) (4.2)

where ρ+
1 = r − r+

1 and ρ−1 = r−1 − r. r±1 indicate the coordinate of the vertices of the triangles E±
1 ,

which are opposite to the common edge. A±1 are the area of the triangles E±
1 and l1 is the length of

the common edge. For the first type of edges, the testing function is applied to be the same as the basis

function.

For the other two types, it is assumed the edges exist in dual pair. As shown in Fig. 4.2, the edges

on C2 are translated with the displacement a1 to get its counterpart on C1. One dual pair of edges

are associated with one unknown. The corresponding basis function B(2) and testing function T(2) are

given by

B(2) =





ρ+
2

l2
2A+

2

e−jk·a1 , r ∈ E+
2

ρ−2
l2

2A−2
, r ∈ E−

2

(4.3)
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Figure 4.2 Three types of edges on triangular elements. The periodic boundary (PB) C1 is comprised
of P2, P3, P6, and P7. The PB C2 is comprised of P1, P4, P5, and P8. The PB C3 is
comprised of P3, P4, P7, and P8. The PB C4 is comprised of P1, P2, P5, and P6.

T(2) =





ρ+
2

l2
2A+

2

ejk·a1 , r ∈ E+
2

ρ−2
l2

2A−2
, r ∈ E−

2

(4.4)

Similarly, the edges on C4 are translated with the displacement a2 to get its counterpart on C3. The

corresponding basis functions B(3) and testing basis functions T(3) are given by

B(3) =





ρ+
3

l3
2A+

3

e−jk·a2 , r ∈ E+
3

ρ−3
l3

2A−3
, r ∈ E−

3

(4.5)

T(3) =





ρ+
3

l3
2A+

3

ejk·a2 , r ∈ E+
3

ρ−3
l3

2A−3
, r ∈ E−

3

(4.6)

The definition of ρ±2,3, r±2,3, and A±2,3 are the same as in (4.2). l2,3 is the length of edges l±2,3.

The special basis functions for the edges on the periodic boundary can guarantee that the outgoing

electric current Jsn satisfies the periodic boundary condition Jsn(r+rI) = Jsn(r)e−jk·rI . Because the

basis function is applied to the edges on the periodic boundary, the condition of zero outgoing current

is not enforced on the truncated boundary of PEC any more.
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After applying weighted residue method, one obtains the matrix equation

[Zmn][In] = [Vm] (4.7)

where

Vm = − β

jη

∫
Tm ·Eincds, (4.8)

Zmn =
∫

s

∫

s′
[∇ ·Tm∇′ ·Bn − β2Tm ·Bn]Gpds′ds (4.9)

The derivation of (4.9) is given in Appendix B. It is worth noting that the phase factor of the testing

function T(2) (or T(3)) has a different sign from the basis function B(2) (or B(3)). Therefore, as given in

Appendix B, the line-surface integral is cancelled and the matrix element Zmn involves only the double

surface integral. Furthermore, the difference of sign can cancel the phase shift of the testing and basis

functions. Thus, the diagonal elements are dominant in the resultant coefficient matrix.

Actually, there are two ways to generate the matrix equation from EFIE for the periodic array. The

first way is to apply the RWG basis functions as the basis and testing functions to the whole array.

Then, with the help of Floquet’s theory or periodic boundary condition (PBC), the resultant infinite

matrix equations can be rearranged and reduced to finite matrix equations about the unknowns on one

unit cell. In this way, the computational domain should first be defined as more than one unit cell.

The second way, which is proposed in this chapter, is to first restrict the computational domain to

be one unit cell. Then, the three types of basis and testing functions are applied to the computational

domain in one unit cell. Among them, two types of basis and testing functions are designed for the

edges on the periodic boundary. The dimension of the resultant matrix equation is naturally finite. It is

worth noting that the PBC is not applied by this approach, rather than guaranteed by the designed basis

function.

These two ways may result in the same matrix equation. The difference is that the second way starts

from the viewpoint of basis function for the edges on the periodic boundary.
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Figure 4.3 One unit cell of the PEC screen and its complementary structure.

4.1.2 Relationship of scattering from the PEC screen with periodicity and its complementary

structure

Figure 4.3 shows two planar structures: the one unit cell of the PEC screen and its complementary

structure. Here, assume the screens are located at z = 0. In Structure I, the PEC parts of the screen

are denoted by S, and the apertures in the screen by S′. In Structure II, the apertures are denoted by

S, and the PEC parts by S′. Babinet’s principle [50] describes the basic relationship of the scattering

fields from the PEC screen and its complementary structures. In Appendix B, the proof of this principle

is given in a simple way. It involves the integral equations.

For any one of these two structures, there are two ways to calculate the reflection and transmission

coefficients. One way is to apply the magnetic field integral equation (MFIE) on the aperture part of

the screen. Let Sr denote a unit surface in z = zr plane at which the reflection coefficient is computed.

St denotes a unit surface in z = zt (zt ≤ zr) plane at which the transmission coefficient is calculated.
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Assume the incident wave is the J0th-order Floquet’s mode. Its transverse component is given by

Ei
t = bi

J0
eγJ0

z
√

ZJ0etJ0 (4.10)

The details about the Floquet’s modes are given in Appendix B.

For the Jth-order Floquet’s mode, the reflection and transmission coefficients are given by

Γa = −δJ0J −
1

2
√

ZJbi
J0

∫

Sa

eγJz′h∗J(ρ′) ·M(r′)ds′ (4.11)

Ta = − 1
2
√

ZJbi
J0

∫

Sa

e−γJz′h∗J(ρ′) ·M(r′)ds′ (4.12)

where M = 2E × ẑ and Sa denotes the aperture surface in the unit cell. δJ0J is the Kronecker delta

function.

The other way is to apply the EFIE on PEC part of the screen to obtain

Γp = −
√

ZJ

2bi
J0

∫

Sp

eγJz′e∗J(ρ′) · J(r′)ds′ (4.13)

Tp = δJ0J −
√

ZJ

2bi
J0

∫

Sp

e−γJz′e∗J(ρ′) · J(r′)ds′ (4.14)

Here, Sp denotes the PEC surface in the unit cell. Derivation of (4.11)-(4.14) are given in Appendix B.

If these two approaches are applied to the same periodic structure with the same incident wave, in

principle, it should hold that

Γa = Γp, Ta = Tp (4.15)

Now these two approaches are applied to the dual periodic structures. Assume MFIE is applied to

Structure I (II) with the TEz incident wave, and EFIE is applied to Structure II (I) with the TMz incident

wave. Using the IE approach in Appendix B, it is easy to find

MTE = ηJTM (4.16)

In addition, the following conditions are satisfied

hJ,TE = eJ,TM, bi
0,TE = −bi

0,TM,

ZJ,TE · ZJ,TM = η2
(4.17)
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As a result, the following relationship can be found

ΓTE
a = −δJ0J − ΓTM

p (4.18)

TTE
a = δJ0J − TTM

p (4.19)

Assume MFIE is applied to Structure I (II) with the TMz incident wave, and EFIE is applied to

Structure II (I) with the TEz incident wave. In a similar manner, one can find

ΓTM
a = −δJ0J − ΓTE

p (4.20)

TTM
a = δJ0J − TTE

p (4.21)

because the following conditions are satisfied

MTM = −ηJTE,

hJ,TM =− eJ,TE, bi
0,TM = −bi

0,TE

(4.22)

In conclusion, the relationship for the reflection and transmission coefficients between the PEC

screen and its complementary structure can be given by

ΓTE(TM)
a = −δJ0J − ΓTM(TE)

p (4.23)

TTE(TM)
a = δJ0J − TTM(TE)

p (4.24)

By using the above relationship, the problem for seeking MFIE solution is transformed to that of

the EFIE.

4.1.3 Application of the PGF

Let u = r − r′. Gp(u) can be efficiently evaluated by application of the following acceleration

technique discussed in [40]. When |uz = z − z′| > 0.5
√

Ω,

Gp(u) =
1
Ω

∑

J

e−γJ|uz |

2γJ
e−jkJ‖·u (4.25)

where

κJ‖ = j1b1 + j2b2, kJ‖ = κJ‖ + k‖, Ω = |a1 × a2|,

b1 =
2π

Ω
a2 × ẑ, b2 =

2π

Ω
ẑ × a1, γJ =

√
|kJ‖|2 − β2, and J = (j1, j2).
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The above expression is the spectral representation of the PGF, which is with the exponential conver-

gence.

When |uz| ≤ 0.5
√

Ω,

Gp(u) = Φps + Φpf − ΓΦ (4.26)

where Φps, Φpf , and ΓΦ are given as follows. Φpf and ΓΦ are modified from [40] to facilitate the

numerical implementation.

ΓΦ(u) =
1
Ω

∑

J

e−jkJ‖·u

2γJ

∑
± e−γJ(

√
Ω±uz)

1− e−γJ

√
Ω

(4.27)

Φps(u) =
∑

I

e−jk‖·rI cos (βRI)
4πRI

[1− erf(ERI)] (4.28)

Φpf (u) =
1

2V

∑

I

e−ju·kI

|kI|2 − β2
·

βe−(|kI|−β)2/(2E)2 1− e−|kI|β/E2

|kI| +
∑
±

e−(|kI|±β)2/(2E)2


 (4.29)

where

a3 = ẑ
√

Ω, b3 =
2π

V
a1 × a2, V = a3 · (a1 × a2),

κI = i1b1 + i2b2 + i3b3, kI = κI + k‖, E =
√

π/V 1/3,

rI = i1a1 + i2a2 + i3a3, RI = |u− rI|, and I = (i1, i2, i3).

In [40], ΓΦ(u) involves the calculation of e
√

ΩγJ or euzγJ . In order to achieve the specified accuracy

for ΓΦ, the number of terms of the summation is generally large. As a result, e
√

ΩγJ or euzγJ often may

be beyond the range of floating point numbers. To avoid this situation, the expression for ΓΦ(u) is

modified to the present form (4.27).

It is obvious that the limit exists for Φpf when |kI|β/E2 approaches to zero. If the plane wave is

normally incident, kI = 0 at I = 0. There is no trouble to calculate Φpf for this case using (4.29).

It should be noted that unlike the free-space Green’s function, the periodic Green’s function has the

singular points in both spatial and spectral domains. When u = 0 and |kI| − β = 0, the PGF encounter

the singularity in Φps and Φpf , respectively. In the case of u = 0, one has to deal with the singularity

[79]-[82] when evaluating the matrix elements obtained from the MoM method.
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4.2 Numerical results

The EFIE approach on PEC is implemented using Fortran language. The evaluation of matrix

elements is time-consuming because of the frequent direct calculation of the PGF. To improve the

efficiency of this approach, the interpolation technique is applied to the tabulated PGF. Since the PGF is

with singularity, the quasi-PGF without the term carrying the singularity is first calculated on uniform

grids. Then the quasi-PGF needed to compute is obtained from the table using the second or third-order

polynomial interpolation in two or three dimension. Finally, the corresponding PGF is obtained by

adding up the term with singularity to the quasi-PGF. To validate the present approach, the reflection

and transmission coefficients of several structures are calculated.

The first example is the infinite PEC plate. The PEC plate is infinitely thin. The 2-D lattice has

a1 = x̂2 cm and a2 = x̂1 + ŷ
√

3/3 cm. Assume the geometrical center of the unit cell is at the origin.

The PEC plate is located at z = 0.

The incident plane wave has the incident angles θi = 60o and φi = 0o. The incident electric field

is along y-direction. As shown in Appendix B, this incident plane wave is the 0th TEz Floquet’s mode.

The special testing and basis function on PB are applied to this example. The total numbers of edges

and unknowns are 630 and 600, respectively. The Fortran program is run on a PC machine with a 3.2

GHz Pentium IV processor. The CPU time is about 2.99 s per frequency point. This array of PEC plate

is essentially the infinite PEC plate. Thus, the induced normalized electric current should be exactly

J̄ = ηJs = ŷE0e
j
√

3
2

βx. Figure 4.4 shows the normalized current distribution at 9 GHz. In Figure

4.4(a), the current varies with x along the line at y0 = 0.192 mm. In Figure 4.4(b), the current varies

with y along the line at x0 = −4.33 mm. As shown in this figure, there are good agreements between

the numerical results and exact solution. Figure 4.5 shows the reflection coefficient of the 0th-order TEz

Floquet’s mode for this array. The exact solution of reflection coefficient is Γ = −1. If the testing and

basis functions (4.3)-(4.6) are applied to the edges on the PB, there are excellent agreements between

the numerical results and the exact solution. However, if there is no testing and basis functions assigned

to the edges on PB, the reflection coefficient is totally wrong.

The second example is the same as the first one, except for a rectangular aperture perforated in the

PEC plate. The rectangular aperture has the width lx = 1.2 cm and height ly = 0.12 cm. Its geometrical
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Figure 4.4 Normalized current distribution at f = 9 GHz. a1 = x̂2 cm and a2 = x̂1 + ŷ
√

3/3 cm.
θi = 60o and φi = 0o.
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and a2 = x̂1 + ŷ
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of rectangular apertures. a1 = x̂2 cm and a2 = x̂1 + ŷ

√
3/3 cm. The rectangular aperture

has the width lx = 1.2 cm and height ly = 0.12 cm. θi = 60o and φi = 0o. The circle
indicates the results taken from [22].
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Figure 4.7 Reflection coefficient of the 0th-order TEz mode for the PEC strip. a1 = x̂1 m and
a2 = ŷ0.5 m. The rectangular PEC plate has the width lx = 0.5 m and height ly = 0.5 m.
θi = 0o and φi = 0o.
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Figure 4.8 Two meshed cylinders in a unit cell. a1 = x̂6 mm and a2 = ŷ6 mm. Each cylinder has the
radius r = 0.6 mm and length L = 6 mm. The space between two cylinders is d = 6 mm.

center is also located at the origin. The transmission coefficient is computed by using two approaches.

When directly using (4.14), i.e., EFIE on the PEC part, the special testing and basis functions for the

edge on PB is applied. The number of unknowns is 3601. The CPU time is about 377 s for each

frequency point. When using (4.24), the EFIE is first applied to calculate the transmission coefficient

for the complementary structure. Because the PEC plate in its complementary structure is inside the unit

cell, the special testing and basis functions for the edge on PB are not applied. For the second approach,

the number of unknowns is 237. The CPU time is about 2.36 s for each frequency point. Figure 4.6

shows the transmission coefficient of the 0th-order TEz Floquet’s mode for this array. Good agreements

are observed between the results of three approaches. It is worth noting that the first approach demands

much more dense mesh to achieve the converged results than the second one. This is due to the singular

current distribution near the edge of the plate. Thus, the second approach is suggested for the periodic

array of apertures.

In the third example, the PEC strip is simulated to demonstrate the convergence of reflection coef-

ficients. The strip is infinite long along y-direction. a1 = x̂1 m and a2 = ŷ0.5 m. In one unit cell, the
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Figure 4.9 Reflection coefficient of the 0th-order TMz mode for the two-layer array of PEC cylinders
shown in Fig. 4.8. θi = 0o and φi = 0o.
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Figure 4.10 Two meshed cylinders in a unit cell. a1 = x̂6 mm and a2 = ŷ6.5 mm. Each cylinder has
the radius r = 0.75 mm and length L = 5 mm. The space between two cylinders is d = 6
mm.
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Figure 4.11 Transmission coefficient of the 0th-order TMz mode for the two-layer array of PEC cylin-
ders shown in Fig. 4.10. θi = 0o and φi = 0o. The circle indicates the results taken from
[33].
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Figure 4.12 Geometry of the Jerusalem cross in a unit cell. a1 = x̂15.2 mm and a2 = ŷ15.2 mm.

PEC plate has the width lx = 0.5 m and height ly = 0.5 m. The geometrical centers of the unit cell and

the PEC plate coincide with each other. The top and bottom sides involve testing and basis functions

for the edges on PB. The left and right sides are not associated with the unknowns. The incident plane

wave has the incident angles θi = 0o and φi = 0o. The incident electric field is along y-direction.

For this case, the 3-D problem can be reduced to the 2-D problem. Then the 2-D IE approach can be

used to calculate the reflection coefficient [67], [84]. Figure 4.7 shows the convergence of the reflection

coefficient of the 0th-order TEz mode. As shown in this figure, the dense mesh is required to achieve

the convergence. This is due to the edge effect of PEC.

The fourth example is the doubly periodic array of two PEC cylinders. Figure 4.8 shows one unit

cell including the meshed cylinders. The axis of each cylinder is along x-direction. a1 = x̂6 mm and

a2 = ŷ6 mm. Each cylinder has the radius r = 0.6 mm and length L = 6 mm. The space between two

cylinders is d = 6 mm. Two cross sections of each cylinder touch two sides of the periodic boundary.

Thus, these two sides involve the testing and basis functions for the edges on PB. The total number of

unknowns is 600. The average CPU time is about 3.9 s per frequency point. The reflection coefficients

are shown in Figure 4.9. As shown in this figure, there are good agreements between the results of

the present approach and 2-D IE approach except at some dips. The discrepancy is due to the different
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Figure 4.13 Reflection coefficient of the 0th-order TMz mode for the doubly periodic array of PEC
Jerusalem cross. θi = 0o and φi = 0o. The circle indicates the results taken from [9].
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mesh type and density for two approaches.

The fifth example is still the doubly periodic array of two PEC cylinders. Unlike the fourth example,

the cylinders are not truncated by the PB. Thus, the mesh is distributed on the closed surface of the

cylinders as shown in Fig. 4.10. The axis of each cylinder is along x-direction. a1 = x̂6 mm and

a2 = ŷ6.5 mm. Each cylinder has the radius r = 0.75 mm and length L = 5 mm. The space between

two cylinders is d = 6 mm. The number of unknowns is 696. No special testing and basis functions on

the PB are applied since the PEC surface is located inside the unit cell. The average CPU time is about

6.9 s per frequency point. Figure 4.11 shows the transmission coefficients of this array. The numerical

results are compared with those from the approach in [33]. The difference between two approaches is

the application of different forms of PGF. In [33], the Ewald transformation [38] is applied to speed up

the convergence of PGF.

The last example is the doubly periodic array of the Jerusalem cross. Figure 4.12 shows the geom-

etry of the Jerusalem cross. The number of unknowns is 502. Similar to the above example, there are

no special testing and basis functions on the PB to be applied. The average CPU time is about 2.2 s per

frequency point. The reflection coefficient of the 0th-order TMz mode is illustrated in Fig. 4.13.
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CHAPTER 5 ERROR IN PROJECTION OF PLANE WAVES USING VARIOUS

BASIS FUNCTIONS

In this chapter, the projection error of various basis functions is investigated. The equivalent current

is expanded by various basis functions. Then application of the weighted residual method will yield

the unknown coefficients of basis functions. After obtaining the coefficients, the projection error can be

found. The root mean square (RMS) error of current is used as the error measure since the current is

integrable. The numerical projection error of the triangular basis, the basis of their higher-order version,

and the divergence-conforming basis on rectangular and triangular elements are shown. Furthermore,

the closed forms of the projection error on the infinite meshes are derived. The basis functions involved

are pulse basis, triangular basis, the second-order basis in 1D case, the divergence-conforming basis

on rectangular elements and the one-directional triangular elements in 2D case. It is found that the

projection error of p-th order 1D basis is asymptotically inversely proportional to (p + 1)-th power of

the density of unknowns. Based on the closed-form projection errors in 1D case, it is found when the

expansion basis is fixed, the application of different testing functions only affect the coefficient of the

projection error rather than the order. In addition, the error of divergence-conforming basis in projection

of curl-free vectors is generally less than that of divergence-free vectors. This is expected since both the

divergence-conforming basis and the expanded vector are with the same property, namely, curl-free.

5.1 Projection error in the 1-D case

In 1-D case, the plane wave is simply expressed as

J(x) = exp(jkx) (5.1)

The infinite mesh consists of the uniform linear elements with equally spaced nodes. The spacing
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between two adjacent nodes is h. The current in (5.1) is projected into an approximated space

J̃(x) =
∑

n

anNn(x) (5.2)

where Nn(x) is the expansion basis function, and an is the corresponding coefficient. Using the

weighted residual method, we obtain

∑
n

an

∫ xm2

xm1

Nn(x)Tm(x)dx =
∫ xm2

xm1

J(x)Tm(x)dx (5.3)

where Tm(x) is the testing function defined at [xm1, xm2].

5.1.1 Projection error of lower-order basis functions

Consider the case that the expansion and testing functions are both triangular basis functions. From

(5.3),

am−1 + 4am + am+1 = 6 exp(jmkh)sinc2(kh/2) (5.4)

where sincx = sinx /x. Since the plane wave propagates along the uniform mesh, the phase difference

between am+1 and am should be ∆θ = kh. Thus, it can be assumed

am = d0 exp(jmkh) (5.5)

where d0 is the coefficient to be solved. Substitution of (5.5) into (5.4) yields

d0 =
3 sinc2(kh/2)
2 + cos(kh)

(5.6)

The assumption is valid since it makes (5.4) hold on for any value of integer m. At x ∈ [xm−1, xm],

the error is

Err(x) = |exp(jkx)− am(x− xm−1)/h− am−1(xm − x)/h| (5.7)

The RMS error is obtained by

ErrRMS =

√√√√
∫ xm

xm−1
Err2(x)dx∫ xm

xm−1
|exp(jkx)|2dx

(5.8)

Evaluating (5.8) with (5.5)-(5.7) yields

ErrRMS =

√
1− 3sinc4(kh/2)

cos(kh) + 2
(5.9)
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When h is small, one can get the asymptotical expression for the RMS error by using cosx ≈ 1 −
x2/2! + x4/4! and sincx ≈ 1− x2/3! + x4/5!

ErrRMS ASM =
(kh)2

12
√

5
(5.10)

Table 5.1 One-dimensional projection error in closed form

Testing function Expansion function ErrRMS ErrRMS ASM

Point function Pulse function
√

2(1− sinc(kh/2)) kh
2
√

3

Pulse function Pulse function
√

1− sinc2(kh/2) kh
2
√

3

Point function Triangular function
√

2[1− sinc2(kh/2)]− 2
3 sin2(kh/2)

√
2
15

(kh)2

4

Triangular function Triangular function
√

1− 3sinc4(kh/2)
cos(kh)+2

(kh)2

12
√
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Figure 5.1 Projection error of lower-order basis functions in the 1-D case.

Similarly, the projection error can be obtained for the other cases: expansion function of pulse basis

and testing function of point function; expansion and testing function of pulse function; expansion

function of triangular basis and testing function of point function. The expressions of the projection
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error are listed in Table 5.1. As shown in this table, when using the expansion function of pulse function,

the error for the testing function of pulse function is very close to that of point function. Thus, there

appears to be little or no advantage for Galerkin method [60] for this case. Figure 5.1 plots the projection

error in Table 5.1 as a function of number of unknowns per wavelength. It should be mentioned that the

error estimate for pulse and triangular basis are different from [56]. It is because the RMS and discrete

RMS error are employed in this paper and [56], respectively. The former performs the integration over

the mesh while the latter executes the summation of the values at the single point of each element.
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Figure 5.2 Numerical and analytical results for the first and second order basis functions.

5.1.2 Projection error of higher-order basis functions

Using the same approach as above, the RMS projection error is derived for expansion and testing

function of second order basis function

ErrRMS ={[(6t2 − 30) cos4 t− 30t sin t cos3 t + (33t2 + 15 + t6) cos2 t

− 30t sin(2t)− 2t6 + 15 + 6t2]/[t6(−2 + cos2 t)]}1/2
(5.11)



www.manaraa.com

63

where t = kh/2. The asymptotical RMS error can be obtained by using the Taylor series expansion of

sinx and cosx

ErrRMS ASM =

√
2

945
(kh/2)3 (5.12)

It should be noted that the nominator in square root sign of (5.11) is O(h12). It is much smaller than 15

in the nominator. Thus, the double or higher precision should be applied for the computer program to

accurately calculate the projection error in (5.11).

As shown in the above expressions, the projection errors using the expansion basis of pulse, tri-

angular, and second order basis are asymptotically proportional to 1, 2, and 3 power of the density of

unknowns, respectively. When the expansion basis is fixed, the application of different testing functions

only affect the constant coefficient of the projection error rather than the order.

Furthermore, the projection error of higher-order 1-D basis function is calculated numerically. For

the sake of simplicity, the computational domain is defined within x ∈ [0, λ] and divided into Ne

linear elements. For the linear element e with the nodes x1 and x2, the coordinate transformation

x = x1 ξ1 + x2 ξ2 is applied, where ξ1 + ξ2 = 1. There are p + 1 interpolatory basis functions of order

p defined on element e

Ni(ξ1, ξ2) = P p
I (ξ1)P

p
J (ξ2) (5.13)

where I + J = p, and P p
I (ξ) is the Silvester polynomial [62]

P p
I (ξ) =





1
I!

I−1∏
k=0

(pξ − k), 1 ≤ I ≤ p

1, I = 0
(5.14)

The Galerkin method is used to obtain the coefficient of basis functions. The Gaussian Legendre quadra-

ture is employed to accurately evaluate the 1-D integral. Unlike at the node inside the computational

domain, the coefficient at the end node corresponds to only half basis function rather than one basis

function. Figure 5.2 shows the analytical and numerical results for first and second order basis. There is

a good agreement between the analytical and numerical results except the discrepancy due to the edge

effect when λ/h ≤ 2. The projection error of the basis from 1st to 5th order is shown in Figure 5.3.

As shown in this figure, the projection error of p-th order basis is asymptotically proportional to (p + 1)

power of the density of unknowns.
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Figure 5.3 Projection error of higher-order basis functions in the 1-D case.

5.2 Projection error in the 2-D case

For a plane wave with incident direction of k̂ and polarization direction of p̂, the magnetic field on

the plane of z = 0 is given by

Hinc = k̂ × p̂ H0exp(−jkk̂ · ρ) (5.15)

where k̂ = −ẑ cos θi + k̂t sin θi, k̂t = −(x̂ cosφi + ŷ sinφi), ρ = x̂x + ŷy, and p̂ = θ̂ cosα + φ̂ sinα.

α is the polarization angle. (θi, φi) are the incident angles. The equivalent electric current on the plane

of z = 0 is

J = ẑ ×Hinc = ẑ × (k̂ × p̂) H0exp(−jk sin θi k̂t · ρ) (5.16)

For the θ-polarization (α = 0◦),

J = −k̂t H0exp(−jk sin θi k̂t · ρ) (5.17)

For the φ polarization (α = 90◦),

J = φ̂ cos θiH0exp(−jk sin θi k̂t · ρ) (5.18)
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It is obvious that the equivalent vector currents of θ and φ polarization are curl- and divergence- free,

respectively.

5.2.1 Projection error of basis functions on rectangular elements 
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Figure 5.4 Curl-conforming basis functions on a rectangular element.

The rectangular element is shown in Figure 5.4. The rectangular element in xy-plane is transformed

into a square element in ξ1ξ2-plane by the coordinate transformation

r = r1ξ1(1− ξ2) + r2ξ1ξ2 + r3(1− ξ1)ξ2 + r4(1− ξ1)(1− ξ2) (5.19)

The curl-conforming basis functions are expressed by

N1 = (1− ξ1)l3/l3

N2 = (1− ξ2)l2/l2

N3 = ξ1l3/l3

N4 = ξ2l2/l2

(5.20)

The divergence-conforming basis functions, which are known as the rooftop basis functions in electro-

magnetics, are

SM = ẑ ×NM (M = 1, · · · , 4) (5.21)

Assume the plane wave propagates along the infinite mesh, which is uniform, namely ∆x = ∆y = h.

The coefficients corresponding to basis functions N1, N2, N3, and N4, are denoted by am n−1, bm−1 n,
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amn, and bmn, respectively. On the rectangular element, the equivalent current in (5.17) and (5.18) is

approximated using the divergence-conforming basis function

J̃ = am n−1S1 + am nS3 + bm n−1S2 + bm nS4 (5.22)

S1(3) is orthogonal to S2(4). Thus, using the Galerkin method, one can obtain two sets of equation in

which the coefficient amn is decoupled with bmn

am n−1 + 4amn + am n+1 = B1 (5.23a)

bm−1 n + 4bmn + bm+1 n = B2 (5.23b)

where

B1 = 6V1
exp(jβ2)− 1

jβ2

exp(j2β1)− 2exp(jβ1) + 1
(jβ1)2

exp[j(n− 1)β1 + j(m− 1)β2]

B2 = 6V2
exp(jβ1)− 1

jβ1

exp(j2β2)− 2exp(jβ2) + 1
(jβ2)2

exp[j(n− 1)β1 + j(m− 1)β2]

V1 = ŷ · (k̂ × p̂), V2 = x̂ · (k̂ × p̂), β1 = kh sin θi cosφi, β2 = kh sin θi sinφi.

For a plane wave with the non-constant factor of exp(jk sin θi cosφi x + jk sin θi sinφi y), one may

assume the coefficients to be with the form

amn = d1 exp[j(n− 1)β1 + j(m− 1)β2] (5.24a)

bmn = d2 exp[j(n− 1)β1 + j(m− 1)β2] (5.24b)

Substitution of (5.24) into (5.23) yields

d1 =
6V1

4 + 2 cos(β1)
exp(jβ2)− 1

jβ2

exp(j2β1)− 2exp(jβ1) + 1
(jβ1)2

(5.25a)

d2 =
6V2

4 + 2 cos(β2)
exp(jβ1)− 1

jβ1

exp(j2β2)− 2exp(jβ2) + 1
(jβ2)2

(5.25b)

Again, the RMS error is obtained by

ErrRMS =

√∫∫
∆s |J̃− J|2ds∫∫

∆s |J|2ds
(5.26)

where ∆s indicates the rectangular element shown in Figure 5.4. From (5.26), the RMS error for

θ-polarization is

ErrRMS =

√
3− 2(|d1|2 + |d2|2)− (|d1|2 cosβ1 + |d2|2 cosβ2)

3
(5.27)
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The RMS error for φ polarization is

ErrRMS =

√
3 cos2 θi − 2(|d1|2 + |d2|2)− (|d1|2 cosβ1 + |d2|2 cosβ2)

3 cos2 θi
(5.28)

Simplifying (5.27) and (5.28), one will obtain

ErrRMS =

√
1− 3 cos2 φi

2 + cosβ1
sinc2(β2/2)sinc4(β1/2)− 3 sin2 φi

2 + cosβ2
sinc2(β1/2)sinc4(β2/2) (5.29)

for θ-polarization, and

ErrRMS =

√
1− 3 sin2 φi

2 + cosβ1
sinc2(β2/2)sinc4(β1/2)− 3 cos2 φi

2 + cosβ2
sinc2(β1/2)sinc4(β2/2) (5.30)

for φ polarization.

When θi = 90◦ and φi = 0◦, the RMS error will be reduced to

ErrRMS =

√
1− 3 sinc4(kh/2)

2 + cos(kh)
(5.31)

for θ-polarization, which is the same as the 1-D RMS error of triangular basis function using Galerkin

method and

ErrRMS =
√

1− sinc2(kh/2) (5.32)

for φ polarization, which is the same as that of pulse basis function using Galerkin method. This is

expected since when θi = 90◦ and φi = 0◦, the divergence-confirming basis on the rectangular element

can be equivalent to the triangular and pulse basis for θ and φ polarization, respectively.

When |β1| << 1 and |β2| << 1, the asymptotical RMS error can be obtained by using Taylor

series expansion of cosx and sincx

ErrRMS ASM =
kh sin θi

2
√

6

√
sin2(2φi) + (kh sin θi)2[1− 1.25 sin2(2φi)]/30 (5.33)

for θ-polarization and

ErrRMS ASM =
kh sin θi

2
√

6

√
2− sin2(2φi) (5.34)

for φ-polarization. The asymptotical expression indicates that when kh is small, the RMS error normal-

ized by sin θi is almost not dependent on θi and linearly varies with the size of element at the specified

φi.
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In addition, the RMS error of the basis on rectangular element is numerically calculated. The

computational domain is truncated into a rectangular area. Each coefficient at the edge of the domain

corresponds to a half basis function rather than one basis function. Figure 5.5 shows the analytical,

numerical and asymptotical RMS error of the divergence-conforming basis on rectangular element.

The mesh size is ∆x = ∆y = h = 0.1λ. The whole size of domain for numerical error is set to

2λ × 2λ. As shown in Figure 5.5, the numerical and analytical results agree very well. Thus, the edge

effect is not significant for the RMS error. Figure 5.6 shows the numerical RMS error normalized by

sin θi. As shown in this figure, the normalized error is almost not dependent on the angle θi. From

(5.17) or (5.18), we find that the apparent wavelength on the plane of z = 0 is λ/ sin θi. The number

of unknowns per wavelength is larger than the original mesh density λ/h = 10. Thus, the smaller θi is,

the smaller the projection error is.

It is observed that the projection error for θ-polarization is less than that for φ-polarization. This is

because both the current of θ-polarization and the divergence-conforming basis function are curl-free.

Figure 5.7 plots the error pattern for different sizes of element. As shown in this figure, the projection

error deceases linearly with the size of element decreasing. This is consistent with what the asymptotical

expression indicates.

5.2.2 Projection error of basis functions on triangular elements

In this subsection,the current is expanded by the divergence-conforming basis function on triangular

elements. This type of basis function and RWG basis function are essentially identical [85]. The RWG

basis function is also used as the testing function. The derivation of analytical RMS error of RWG basis

function is complex. It is only derived of the analytical RMS error of RWG basis function on infinite

one-directional mesh [54] as shown in Fig. 5.8(a). The details of derivation are given in Appendix. For

θ-polarization,

ErrRMS =

√
1− {3[|I1|2 + |I2|2 + |I1 + I2|2]

4− cos2(β1 − β2)
+

3
2
|I3|2} (5.35)

and for φ-polarization,

ErrRMS =

√
1− {3[|I1|2 + |I2|2 + |I1 + I2|2]

4− cos2(β1 − β2)
+

3
2
|I3|2}/ cos2 θi (5.36)



www.manaraa.com

69

  0.05

  0.1

  0.15

30

210

60

240

90

270

120

300

150

330

180 0

 

 

Analytical
Asymptotical
Numerical

(a) θ-polarization

  0.05

  0.1

  0.15

  0.2

30

210

60

240

90

270

120

300

150

330

180 0

 

 

Analytical
Asymptotical
Numerical

(b) φ-polarization

Figure 5.5 Projection error, normalized by sin θi, of basis functions on rectangular element at θi = 30◦

(h = 0.1λ).
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(a) θ-polarization
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(b) φ-polarization

Figure 5.6 Numerical projection error, normalized by sin θi, of basis functions on rectangular elements
in different θi (h = 0.1λ).
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(a) θ-polarization
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(b) φ-polarization

Figure 5.7 Numerical projection error, normalized by sin θi, of basis functions on rectangular elements
with different sizes. θi = 89◦.
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where

I1 = E1 + E∗
1exp(jβ2)

I2 = E2 + E∗
2exp(jβ1)

I3 = E3 + E∗
3exp(jβ1 + jβ2)

E1 = −V1I11(jβ1, jβ2)− V2I12(jβ1, jβ2)

E2 = V1I21(jβ1, jβ2) + V2I22(jβ1, jβ2)

E3 =
√

2[−V1I11(jβ1, jβ2) + V2I22(jβ1, jβ2)]

V1 =





sinφi, θ-polariztion

cos θi cosφi, φ-polariztion
, V2 =




− cosφi, θ-polariztion

cos θi sinφi, φ-polariztion

I11(x1, x2) =
ex1−x2 − (x1 − x2)− 1

(x1 − x2)2
ex2

x2
− 1

x2
2

[
ex2

ex1−x2 − 1
x1 − x2

− ex1 − 1
x1

]

I12(x1, x2) =
ex1−x2 − (x1 − x2)− 1

(x1 − x2)2
ex2

x2
− 1

x1x2

[
1− ex1 − 1

x1

]

I21(x1, x2) = I12(x2, x1), I22(x1, x2) = I11(x2, x1)

The asymptotical RMS error can be obtained

ErrRMS ASM =
kh sin θi

2
√

6

√
2− sin2(2φi) (5.37)

for θ-polarization and

ErrRMS ASM =
kh sin θi

2
√

6

√
2 + sin2(2φi)− 2 sin(2φi) (5.38)

for φ-polarization.
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Figure 5.8 Four types of triangular meshes.
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(a) θ-polarization

  0.1

  0.2

  0.3

30

210

60

240

90

270

120

300

150

330

180 0

 

 

Analytical
Asymptotical
Numerical

(b) φ-polarization

Figure 5.9 The projection error, normalized by sin θi, of basis functions on the one-directional trian-
gular mesh at θi = 30◦. h = 0.1λ.
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Figure 5.10 Analytical projection error for the one-directional triangular mesh as a function of φi at
different angles θi. h = 0.1λ.
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Figure 5.11 Analytical projection error, normalized by sin θi, for the one-directional triangular mesh
as a function of φi (φ-polarization). h = 0.1λ.
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Figure 5.12 Analytical projection error, normalized by sin θi, for the one-directional triangular mesh
with different sizes (φ-polarization). θi = 89◦.
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Figure 5.13 The numerical projection error, normalized by sin θi, for five different meshes as a func-
tion of φi. θi = 89◦ and h = 0.1λ.
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Additionally, it is numerically calculated of the RMS error of RWG basis function on one-directional,

arrow, diamond, and hexagonal meshes [54], [65], [66]. For each mesh, the shortest distance between

nodes is h. Figure 5.9 shows the analytical, asymptotical and numerical projection error of the RWG

basis function on the one-directional mesh. Good agreement between them can be observed in this

figure.

Figure 5.10 shows the projection error for one-directional mesh as a function of φi with different θi.

It is found that the error in the projection of θ-polarization current (curl-free vector) is less than that of

φ-polarization (divergence-free vector). This is because that the RWG basis functions are curl-free. As

shown in Figure 5.10, the projection error is anisotropic and varies with the direction of propagation.

Also, the severity of the anisotropic behavior relates to the element arrangement of the meshes and

the polarization of the incident plane wave. Like the projection error of basis functions on rectangular

elements, the smaller θi is, the smaller the projection error is. As indicated by the asymptotical form,

the projection error normalized by sin θi almost does not depend on θi, as shown in Figure 5.11. In

Figure 5.12, the projection error plotted as a function of φi with three different values of h/λ has

the same shape but different magnitude. The smaller the value of h/λ is, the smaller the error is.

Furthermore, it is found that the error is proportional to h/λ.

Figure 5.13 shows the projection error as a function of φi for five different meshes with λ/h = 10

[65], [66]. The average unknowns density is 200/λ2 for the square mesh, 300/λ2 for one-directional,

arrow, and diamond meshes, and 346/λ2 for hexagonal mesh. It is observed again that the error in

the projection of θ-polarization current is less than that of φ-polarization. For the one-directional and

arrow (or diamond) meshes, the projection errors are different for the φ-polarization; however, they

agree with each other for the θ-polarization. The error in the hexagonal mesh is almost omnidirectional

and less than the errors in the other three meshes in which the longest edge is
√

2h. The shape of the

error curves for the φ-polarization is similar to that of the phase error in the finite element method using

triangular nodal elements [54], [65], [66]. Moreover, the error pattern shape of rectangular element for

φ-polarization is similar to that of one-directional, arrow and diamond meshes for θ-polarization.
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CHAPTER 6 CONCLUSIONS

In Chapter 2, the IE approach for scattering from the singly periodic array of 2-D PEC conducting

objects is described. In addition, the hybrid IE-plane wave approach is implemented to calculate the

band structure of the metallic crystals. The numerical results generated by the in-house code can serve

as the benchmark results to validate the proposed approaches in Chapters 3 and 4.

In Chapter 3, a DDM approach, which is based on equivalence principle and connection scheme

(EPACS), is developed to calculate the scattering from multilayered periodic arrays. This approach does

not involve the multilayered periodic Green’s function. More importantly, based on EPACS, an effective

approach is proposed to handle the case of semi-infinitely layered periodic arrays. The numerical results

are provided to verify the proposed method. The efficiency of the proposed method is also demonstrated

in this chapter. This method can be extended readily to calculate the scattering from 3-D doubly periodic

structures with multiple and semi-infinite layers.

Chapter 4 addresses several issues in the integral-equation (IE) method for scattering from the dou-

bly periodic array. First, the formulation in [21] is modified to facilitate the numerical implementation.

Second, special testing and basis functions are proposed for the edges on the periodic boundary. The

application of them can model the currents flowing out the truncated boundary of PEC. Third, the rela-

tionship for the reflection and transmission coefficients between the PEC screen with periodicity and its

complementary structure is given. Numerical results are provided to validate the proposed approach.

In chapter 5, the projection error in 1D and 2D case is analyzed. The analytical projection error

on the infinite meshes are given for 1D and 2D cases. The 1D case includes the pulse basis, triangular

basis, the second-order basis, and the 2D case includes roof-top basis function and RWG basis function

on the one-directional triangular mesh. In addition, the projection error of basis functions on rectangular

elements is numerically calculated within a finite computational domain. A half basis function and one
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basis function are applied for each coefficient at the edge of and inside the domain, respectively. There

are good agreements between the analytical and numerical results. It is found the projection error of

p-th order 1D basis function is asymptotically inversely proportional to (p + 1)-th power of the density

of unknowns. It is also found that the error in projection of curl-free vectors is generally less than

that of divergence-free vectors using the divergence-conforming basis function on both rectangular and

triangular elements. In fact, the divergence-conforming basis is with the property of curl-free. So the

basis function and the expanded vector are with the same property, i.e. curl-free. Thus, the projection

error of curl-free vector should be smaller. The error in the 2D case decreases linearly with the mesh

density increasing due to the low order of the basis functions.
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APPENDIX A DERIVATION OF R(1)

In what follows, the derivation of R(1) in (3.7) is given in detail. Rewriting (3.5) as



T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44







Et1

Eb1

El1

Er1




=




S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44







Jt1

Jb1

Jl1

Jr1




(A.1)

and employing (3.6), one will obtain



T11 T12 T ′13

T21 T22 T ′23

T31 T32 T ′33

T41 T42 T ′43







Et1

Eb1

El1




=




S11 S12 S′13

S21 S22 S′23

S31 S32 S′33

S41 S42 S′43







Jt1

Jb1

Jl1




(A.2)

where T ′i3 = Ti3 + Ti4e
−jkxPL and S′i3 = Si3 − Si4e

−jkxPL (i = 1, 2, 3, 4). Reorganizing the last two

sets of equations in (A.2) yields



T ′33 −S′33

T ′43 −S′43







El1

Jl1


 = −




T31 T32

T41 T42







Et1

Eb1


 +




S31 S32

S41 S42







Jt1

Jb1


 (A.3)

Thus,



El1

Jl1


 =




T ′33 −S′33

T ′43 −S′43




−1



−




T31 T32

T41 T42







Et1

Eb1


 +




S31 S32

S41 S42







Jt1

Jb1








(A.4)

Reorganizing the first two sets of equations in (A.2) yields



T ′13 −S′13

T ′23 −S′23







El1

Jl1


 +




T11 T12

T21 T22







Et1

Eb1


 =




S11 S12

S21 S22







Jt1

Jb1


 (A.5)



www.manaraa.com

81

Combining (A.4) and (A.5), one can get

P




Et1

Eb1


 = Q




Jt1

Jb1


 (A.6)

where

P =




T11 T12

T21 T22


−




T ′13 −S′13

T ′23 −S′23







T ′33 −S′33

T ′43 −S′43




−1 


T31 T32

T41 T42




Q =




S11 S12

S21 S22


−




T ′13 −S′13

T ′23 −S′23







T ′33 −S′33

T ′43 −S′43




−1 


S31 S32

S41 S42




From (A.6), 


Et1

Eb1


 = R(1)




Jt1

Jb1


 (A.7)

where

R(1) = P−1Q (A.8)
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APPENDIX B Derivation of formulations for doubly periodic arrays

B.1 Derivation of matrix elements

In this section, the derivation of (4.9) is given. Multiplying the testing function on both sides of

(4.1) and performing the integral over PEC surface give (4.8) and

Zmn =
∫

s

∫

s′

[
−(Tm · ∇Gp)∇′ ·Bn − β2Tm ·BnGp

]
ds′ds (B.1)

Applying the following identity

∇ · (fA) = A · ∇f + f∇ ·A (B.2)

and the surface divergence theorem, one can change the integral of the first term in (B.1) into

I1 =
∫

s

∫

s′
∇ ·Tm∇′ ·BnGpds′ds

−
∫

C+

(u ·Tm)
∫

s′
∇′ ·BnGpds′dl

−
∫

C−
(u ·Tm)

∫

s′
∇′ ·BnGpds′dl

(B.3)

where s denotes two triangular elements associated with Tm, and s′ denotes two ones associated with

Bn. u denotes the unit vector normal to contour C± bounding the two triangular elements s. Assume

E+ and E− are the two elements denoted by s, as shown in Fig. 4.2. Since u · Tm = 0 holds at the

four edges which do not correspond to the testing function Tm, (B.3) will reduce to

I1 =
∫

s

∫

s′
∇ ·Tm∇′ ·BnGpds′ds

−
∫

l+
(u ·Tm)

∫

s′
∇′ ·BnGpds′dl

−
∫

l−
(u ·Tm)

∫

s′
∇′ ·BnGpds′dl

(B.4)
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Here l+ and l− denote the edges corresponding to Tm on E+ and E−, respectively. ∇′ ·Bn is a constant

and can be moved outside the line-surface integral. For the first type of edge, u · Tm = ±1 at l+ and

l−, respectively. Thus, the two line-surface integrals are cancelled with each other.

For the second type of edge, u · Tm = ejk·a1 and u · Tm = −1 at l+ and l−, respectively. Then

the term about line-surface integral is given by

Ils = −∇′ ·Bn

[
ejk·a1

∫

l+

∫

s′
Gpds′dl −

∫

l−

∫

s′
Gpds′dl

]
(B.5)

The coordinate transformation r+ = r− + a1 is used for the first term in the bracket of (B.5). In

addition, according to the Floquet’s theorem,

Gp(u + a1) = Gp(u)e−jk·a1 (B.6)

Thus,

Ils = −∇′ ·Bn

[
ejk·a1

∫

l−

∫

s′
Gpe

−jk·a1ds′dl −
∫

l−

∫

s′
Gpds′dl

]
= 0 (B.7)

Combination of (B.4) and (B.7) gives

I1 =
∫

s

∫

s′
∇ ·Tm∇′ ·BnGpds′ds (B.8)

In the similar manner, one can obtain (B.8) for the case of the third type of edges.

B.2 Proof of Babinet’s principle

(i) Let the EM field

Einc = F, H̄inc = ηHinc = k̂ × F (B.9)

be incident in z > 0 on the PEC screen on the plane z = 0; Let the total field in z < 0 be E1, H̄1.

(ii) Let the EM field

Einc = −k̂ × F, H̄inc = F (B.10)

be incident in z > 0 on the complementary PEC screen on the plane z = 0; Let the total field in z < 0

be E2, H̄2.
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Then, the Babinet’s principle asserts that [50]

E1 + H̄2 = F, H̄1 −E2 = k̂ × F (B.11)

In fact, one may have

jβ

∫

S
[J̄(r′) +

1
β2
∇′ · J̄(r′)∇]Gp(r, r′)ds′ = F (B.12)

for Problem (i), and

jβ

∫

S
[M(r′) +

1
β2
∇′ ·M(r′)∇]Gp(r, r′)ds′ = F (B.13)

for Problem (ii). Here J̄ = ηJ and M = 2E× ẑ. As shown in (B.12) and (B.13), J̄ and M satisfy the

same integral equation on the same domain. Thus,

J̄ = M (B.14)

The total fields z < 0 are given by

E1 = F− jβ

∫

S
[J̄(r′) +

1
β2
∇′ · J̄(r′)∇]Gp(r, r′)ds′ (B.15)

for Problem (i), and

H̄2 = jβ

∫

S
[M(r′) +

1
β2
∇′ ·M(r′)∇]Gp(r, r′)ds′ (B.16)

for Problem (ii). Adding (B.15) to (B.16) yields

E1 + H̄2 = F (B.17)

Taking curl of both sides of (B.17) and then taking advantage of Maxwell equations and ∇ × F =

−jβk̂ × F gives

H̄1 −E2 = k̂ × F (B.18)

B.3 Derivation of reflection and transmission coefficients

The electric and magnetic fields can be expanded into the TMz and TEz Floquet’s modes

Et =
∑

J

(aJe−γJz + bJeγJz)
√

ZJ,TM etJ,TM

+
∑

J

(cJe−γJz + dJeγJz)
√

ZJ,TE etJ,TE

(B.19)
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Ez =
∑

J

(aJe−γJz − bJeγJz)
√

ZJ,TM ezJ,TM (B.20)

Ht =
∑

J

(aJe−γJz − bJeγJz)
1√

ZJ,TM

htJ,TM

+
∑

J

(cJe−γJz − dJeγJz)
1√

ZJ,TE

htJ,TE

(B.21)

Hz =
∑

J

(cJe−γJz + dJeγJz)
1√

ZJ,TE

hzJ,TE (B.22)

Table B.1 Description of TMz and TEz Floquet’s modes

TMz TEz

htJ,TM = jχJ
ẑ×kJ‖
|kJ‖| etJ,TE = −jχJ

ẑ×kJ‖
|kJ‖|

etJ,TM = jχJ
kJ‖
|kJ‖| htJ,TE = jχJ

kJ‖
|kJ‖|

ezJ,TM = |kJ‖|
γJ

χJ hzJ,TE = |kJ‖|
γJ

χJ

ZJ,TM = γJ
jωε ZJ,TE = jωµ

γJ

Table B.1 shows the vector function for the TMz and TEz Floquet’s modes [33]. Here

χJ =
1√
Ω

e−jkJ‖·ρ (B.23)

When κJ‖ = 0 and k‖ = 0 (sin θi = 0),

etJ = jχJk̂ρ (B.24)

for the TMz case and

etJ = −jχJẑ × k̂ρ (B.25)

for the TEz case. Here k̂ρ = −(x̂ cosφi + ŷ sinφi).

It is easy to verify the following orthogonality of etJ and htJ

∫

Ω
etJ1,TM · e∗tJ2,TMds =





1, J1 = J2

0, J1 6= J2

(B.26)

∫

Ω
htJ1,TM · h∗tJ2,TMds =





1, J1 = J2

0, J1 6= J2

(B.27)
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∫

Ω
etJ1,TE · e∗tJ2,TEds =





1, J1 = J2

0, J1 6= J2

(B.28)

∫

Ω
htJ1,TE · h∗tJ2,TEds =





1, J1 = J2

0, J1 6= J2

(B.29)

∫

Ω
etJ1,TE · e∗tJ2,TMds = 0,

∫

Ω
htJ1,TE · h∗tJ2,TMds = 0 (B.30)

The incident plane wave is a special case of (B.19)-(B.22), whose electric field is expressed as

Einc = (θ̂ cosα + φ̂ sinα)E0e
−jk·r (B.31)

where k = k‖ − ẑkz , k‖ = k̂ρβ sin θi, and kz = β cos θi.

It is easy to verify that the incident plane wave is the combination of 0th-order TMz and TEz

Floquet’s modes. For θ-polarization (α = 0o),

Einc = bi
0,TMeγ0z

√
Z0,TM(et0,TM − ez0,TM) (B.32)

where bi
0,TM = jE0

√
Ωcos θi/η and γ0 = jβ cos θi. For φ-polarization (α = 90o),

Einc = bi
0,TEeγ0z

√
Z0,TE et0,TE (B.33)

where bi
0,TE = −jE0

√
Ω cos θi/η.

For the MFIE approach, one can first apply the equivalence principle and image theory [48]-[49]

to find the magnetic field in terms of the tangential electric fields on the apertures Sa. Assuming the

screen is located at z = 0, one may have

Hinc + Hr = H + L(M), z > 0

0 = H− L(M), z < 0
(B.34)

where

L(M) = jωε

∫

Sa

M(r′) · [Ī +
1
β2
∇∇]Gp(r, r′)ds′ (B.35)
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M = 2E× ẑ. Hr is the reflected field by infinite PEC surface. From (B.34), the MFIE on the aperture

can be established

Lt(M) = Hinc
t , z = 0 (B.36)

The scattered field above the aperture can be found by

Hs = −L(M) + Hr, z > 0 (B.37)

The transverse components of incident and reflected magnetic fields are given by, respectively

Hi
t = −bi

J0
eγJ0

z 1√
ZJ0

htJ0 (B.38)

and

Hr
t = −bi

J0
e−γJ0

z 1√
ZJ0

htJ0 (B.39)

At z = zr, the transverse component of −L(M) can be expanded as

−Lt(M) =
∑

J

aJe−γJzr
1√
ZJ

htJ (B.40)

Using (B.40) and the orthogonality of Floquet’s modes yields

aJ = −eγJzr
√

ZJ

∫

Sr

L(M) · h∗tJds (B.41)

since Lt(M) · h∗tJ = L(M) · h∗tJ. The reflection (transmission) coefficient is defined as the ratio of

the Floquet’s modes coefficient of the reflected (transmitted) electric field to that of the incident electric

field. From (B.37), (B.39), (B.19), and (B.21), the reflection coefficient can be found by

Γ =
aJ − δJ0Jbi

J0

bi
J0

(B.42)

Substitution of (B.41) into (B.42) yields

Γ = −eγJzr
√

ZJ

bi
J0

∫

Sr

L(M) · h∗tJds− δJ0J (B.43)

At z = zt, Ht can be expanded as

Ht =
∑

J

(−bJ)eγJzt
1√
ZJ

htJ (B.44)
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Using (B.44) and the orthogonality of Floquet modes yields

bJ = −e−γJzt
√

ZJ

∫

St

H · h∗tJds (B.45)

The transmission coefficient can be found by

T =
bJ
bi
J0

(B.46)

Substitution of (B.45) into (B.46) yields

T = −e−γJzt
√

ZJ

bi
J0

∫

St

H · h∗tJds (B.47)

It does hold that

M ·
∫

Ω
(I +

1
β2
∇∇)Gp · h∗tJds = −γJe−γJ|uz |

2β2
h∗J(ρ′) ·M (B.48)

for the TEz case, and

M ·
∫

Ω
(I +

1
β2
∇∇)Gp · h∗tJds =

e−γJ|uz |

2γJ
h∗J(ρ′) ·M (B.49)

for the TMz case. Here Ω denotes Sr or St. Thus, for both TEz and TMz cases, one can obtain
∫

Ω
L(M) · h∗tJds =

∫

Sa

1
2ZJ

e−γJ|uz |h∗J(ρ′) ·M(r′)ds′ (B.50)

Assume the planes Sr and St are above and below the scatterers, respectively. Substitution of (B.50)

into (B.43) and (B.47) yields (4.11) and (4.12).

Next, the derivation of (4.13)-(4.14) is given. The transverse component of incident wave is given

by

Ei
t = bi

J0
eγJ0

z
√

ZJ0etJ0 (B.51)

When the incident wave is the plane wave, the coefficient bi
J can be found by (B.32) and (B.33).

The transverse component of the total electric field is given by

Et(z = zr) = Ei
t + Es

t = bi
J0

eγJ0
zr

√
ZJ0etJ0 + Es

t |z=zr
(B.52)

where Es
t is the transverse component of the scattering field Es. Es

t can be expanded as

Es
t (z = zr) =

∑

J

aJe−γJzr
√

ZJetJ (B.53)
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Using (B.53) and the orthogonality of Floquet’s modes yields

∫

Sr

Es · e∗tJds = aJe−γJzr
√

ZJ (B.54)

since Es
t · e∗tJ = Es · e∗tJ. The reflection coefficient can be found by

Γ =
aJ

bi
J0

=
eγJzr

bi
J0

√
ZJ

∫

Sr

Es · e∗tJds (B.55)

At z = zt,

Et(z = zt) = bi
J0

eγJ0
zt

√
ZJ0etJ0 + Es

t |z=zt
(B.56)

The transverse component of the total electric field can be expanded as

Et(z = zt) =
∑

J

bJeγJzt
√

ZJetJ (B.57)

Combing (B.56) and (B.57) and using the orthogonality of Floquet modes, one can obtain

δJ0Jbi
J0

eγJ0
zt

√
ZJ0 +

∫

St

Es · e∗tJds = bJeγJzt
√

ZJ (B.58)

The transmission coefficient can be found by

T =
bJ
bi
J0

= δJ0J +
e−γJzt

bi
J0

√
ZJ

∫

St

Es · e∗tJds (B.59)

The scattered field is given by

Es = −jωµ

∫

S
J(r′) · [I +

1
β2
∇∇]Gp(r, r′)ds′ (B.60)

For convenience, etJ is rewritten as

etJ = CJe−jkJ‖·ρ (B.61)

Using

Gp(u) =
1
Ω

∑

J

e−γJ|uz |

2γJ
e−jkJ‖·u (B.62)

one can obtain

∫

Ω
Gpe∗tJds =

1
2Ω

∫

Ω

∑

I

e−γI|uz |

γI
ejkI‖·ρ′e−jkI‖·ρC∗

JejkJ‖·ρds =
1
2

e−γJ|u⊥|

γJ
e∗tJ(ρ′) (B.63)
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Moreover,
∫

Ω
∇∇Gp · e∗tJds

=
1

2Ω

∑

I

(∓γIẑ − jkI‖)(∓γIẑ − jkI‖)
e−γI|uz |

γI
ejkI‖·ρ′ ·

∫

Ω
e−jkI‖·ρC∗

JejkJ‖·ρds

=
e−γJ|uz |

2γJ
(∓γJẑ − jkJ‖)(∓γJẑ − jkJ‖) ·C∗

JejkJ‖·ρ′

=
e−γJ|uz |

2γJ
(∓γJẑ − jkJ‖)(∓γJẑ − jkJ‖) · e∗tJ(ρ′)

(B.64)

Thus, for TMz case,
∫

Ω
(I +

1
β2
∇∇)Gp · e∗tJds

=
e−γJ|uz |

2γJ

[
e∗tJ(ρ′) +

1
β2

(∓γJẑ − jkJ‖)(∓γJẑ − jkJ‖) · e∗tJ(ρ′)
]

=
e−γJ|uz |

2γJβ2

[
β2e∗tJ(ρ′) + (±γJẑ + jkJ‖)jkJ‖ · e∗tJ(ρ′)

]

=
e−γJ|uz |

2γJβ2

[
β2e∗tJ(ρ′) + (±γJẑ + jkJ‖)|kJ‖|χ∗J

]

=
e−γJ|uz |

2γJβ2

[
(β2 − |kJ‖|2)e∗tJ ∓ γ2

J

|kJ‖|
−γJ

χ∗Jẑ

]

=− γJe−γJ|uz |

2β2
(e∗tJ ±

|kJ‖|
−γJ

χ∗Jẑ)

=− γJe−γJ|uz |

2β2
(e∗tJ ± e∗zJẑ)

(B.65)

For TEz case,
∫

Ω
(I +

1
β2
∇∇)Gp · e∗tJds

=
e−γJ|uz |

2γJ

[
e∗tJ(ρ′) +

1
β2

(−γJẑ − jkJ‖)(−γJẑ − jkJ‖) · e∗tJ(ρ′)
]

=
e−γJ|uz |

2γJ
e∗tJ(ρ′)

=
e−γJ|uz |

2γJ
e∗J(ρ′)

(B.66)

Therefore, for both TEz and TMz cases, one can obtain
∫

Ω
Es · e∗tJds =

∫

S
(−1)

ZJ

2
e−γJ|uz |e∗J(ρ′) · J(r′)ds′ (B.67)

since the electric current J has only the transverse component along the surface Sr or St. Substituting

(B.67) into (B.55) and (B.59) yields (4.13) and (4.14).
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In [33], the induced electric field is obtained by

Es =
∫

S
GEE(r, r′) · J(r′)ds′ (B.68)

where

GEE(r, r′) =
∑

J

(−1)
ZJ

2
e−γJ|uz |etJ(ρ)e∗J(ρ′) (B.69)

Actually, from (B.60), one has

GEE(r, r′) = −jωµ

[
(I +

1
β2
∇∇)Gp

]

t

(B.70)

Thus, using (B.62) gives

GEE(r, r′) =
∑

J

−jωµ

Ω
e−γJ|uz |

2γJ
e−jkJ‖·ρ−ρ′

[
Īt +

1
β2

(−jkJ‖)(∓γJẑ− jkJ‖)
]

=
∑

J

−jωµ

Ω
e−γJ|uz |

2γJ
e−jkJ‖·ρ−ρ′

·
[

kJ‖
|kJ‖|

kJ‖
|kJ‖|

+
ẑ × |kJ‖|
|kJ‖|

ẑ × |kJ‖|
|kJ‖|

− 1
β2

jkJ‖(∓γJẑ− jkJ‖)

]
(B.71)

Then

GEE(r, r′) = GEE,1 + GEE,2 (B.72)

where

GEE,2 =
∑

J

−jωµ

Ω
e−γJ|uz |

2γJ
e−jkJ‖·ρ−ρ′ ẑ × |kJ‖|

|kJ‖|
ẑ × |kJ‖|
|kJ‖|

= −
∑

J

ZJ

2
e−γJ|uz |etJ,TE(ρ)e∗J,TE(ρ′)

(B.73)

GEE,1 =
∑

J

−jωµ

Ω
e−γJ|uz |

2γJ
e−jkJ‖·(ρ−ρ′)

[
kJ‖
|kJ‖|

kJ‖
|kJ‖|

− 1
β2

jkJ‖(∓γJẑ− jkJ‖)

]

=
∑

J

−jωµ

2
e−γJ|uz |

γJ


etJ,TM(ρ)e∗J,TM(ρ′)

(
1− |kJ‖|2

β2

)
− jkJ‖

β2Ω
(∓γJ)e−jkJ‖·ρ−ρ′ ẑ




=
∑

J

(−1)
ZJ

2
e−γJ|uz |etJ,TM(ρ)

[
e∗tJ,TM(ρ′)± e∗z ẑ

]

(B.74)



www.manaraa.com

92

Since the electric current J has only transverse component, one may have

GEE,1 = −
∑

J

ZJ

2
e−γJ|uz |etJ,TM(ρ)e∗J,TM(ρ′) (B.75)

Thus, we have

GEE(r, r′) =
∑

J

(−1)
ZJ

2
e−γJ|uz |etJ(ρ)e∗J(ρ′) (B.76)
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APPENDIX C DERIVATION OF ANALYTICAL FORMULAE FOR PROJECTION

ERROR

C.1 Analytical projection error of triangular basis functions

For the triangular basis function Nm(x) and Nm±1 at xm = mh and xm±1 = (m± 1)h,

∫
Nm(x)Nm(x)dx =

∫ xm

xm−1

(
x− xm−1

h

)2

dx +
∫ xm+1

xm

(
xm+1 − x

h

)2

dx =
2h

3
(C.1)

∫
Nm(x)Nm−1(x)dx =

∫
Nm(x)Nm+1(x)dx =

∫ xm+1

xm

xm+1 − x

h

x− xm

h
dx =

h

6
(C.2)

where h is the spacing between two neighboring nodes. And
∫

Nm(x)exp(jkx)dx =
∫ xm

xm−1

x− xm−1

h
exp(jkx)dx +

∫ xm+1

xm

xm+1 − x

h
exp(jkx)dx

= h exp(jmkh)sinc2(kh/2)

(C.3)

In (5.8),

I =
∫ xm

xm−1

Err2(x)dx =
∫ h

s=0

∣∣∣∣1− d0exp[jk(h− s)]
s

h
− d0exp(−jks)

h− s

h

∣∣∣∣
2

ds

=
∫ h

s=0
1 +

∣∣∣∣d0exp[jk(h− s)]
s

h
+ d0exp(−jks)

h− s

h

∣∣∣∣
2

− 2 Re
(

d0exp[jk(h− s)]
s

h
+ d0exp(−jks)

h− s

h

)
ds

=
∫ h

s=0
1 + d2

0

[
(
s

h
)2 + (

h− s

h
)2

]
+ 2 Re

(
d2

0

s

h

h− s

h
exp(jkh)

)

− 2 Re
(

d0exp(jk(h− s))
s

h
+ d0exp(−jks)

h− s

h

)
ds

(C.4)

Here Re() denotes taking the real part of a complex number. It is easy to get

∫ h

s=0

(
s

h

)2

ds =
∫ h

s=0

(
h− s

h

)2

ds = h/3 (C.5)
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∫ h

s=0

s

h
exp(−jk(s− h))ds =

1
h

[
h

−jk
− 1− exp(jkh)

(jk)2

]
(C.6)

∫ h

s=0
exp[−jk(s− h)]ds =

1− exp(jkh)
−jk

(C.7)

Thus,

I = h

[
1 +

2d2
0 + d2

0 cos(kh)
3

]
− 2 Re


d0(1− e−jkh)

h

(
h

−jk
− 1− ejkh

(jk)2

)
+ d0

e−jkh − 1
−jk




= h

[
1 +

2 + cos(kh)
3

d2
0

]
− 2 Re

(
d0e

−jkh(ejkh − 1)2

h(jk)2

)

= h

[
1 +

2 + cos(kh)
3

d2
0

]
− 2hd0sinc2(kh/2)

= h

[
1− 3sinc4(kh/2)

cos(kh) + 2

]

(C.8)

Therefore, the RMS error is obtained

ErrRMS =

√
1− 3sinc4(kh/2)

cos(kh) + 2
(C.9)

When N is large, we can get the asymptotical expression

Err2RMS =
cos(2t) + 2− 3sinc4t

cos(2t) + 2

≈ 1− 4t2/2 + 16t4/24 + 2− 3(1− t2/6 + t4/120)4

1− 4t2/2 + 2

≈ 3− 4t2/2 + 16t4/24− 3(1− t2/3 + 2t4/45)2

3

≈ 3− 4t2/2 + 16t4/24− 3(1− 2t2/3 + t4/5)
3

=
t4

45

(C.10)

where t = kh/2. Thus,

ErrRMS ASM =
(kh)2

12
√

5
(C.11)
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C.2 Analytical projection error of second-order basis functions in 1D case

For the mth linear element e with nodes of xm and xm−1, there are three basis functions of second

order

N e
M (ξ1, ξ2) = P p

I (ξ1)P
p
J (ξ2) =





(1− ξ1)(1− 2ξ1), M = 1 (I = 0 and J = 2)

4ξ1(1− ξ1), M = 2 (I = 1 and J = 1)

ξ1(2ξ1 − 1), M = 3 (I = 2 and J = 0)

(C.12)

The coordinate transformation is applied

x = xm−1ξ1 + xmξ2, (C.13)

where ξ1 + ξ2 = 1. The local matrix [85] Ke = [Ke
MN ]3×3, in which

Ke
MN =

∫
N e

MN e
Ndx = h

∫ 1

ξ1=0
N e

MN e
Ndξ1

is found to be

Ke = h




2
15

1
15 − 1

30

1
15

8
15

1
15

− 1
30

2
15

1
15




(C.14)

Assume the coefficients am and bm of the basis corresponding to the node xm and the central point of

the ith element e. Using the Galerkin method with respect to bm and am, we have two equations

1
15

am−1 +
8
15

bm +
1
15

am = B1

− 1
30

am−1 +
1
15

bm +
4
15

am +
1
15

bm+1 − 1
30

am+1 = B2

(C.15)

where

B1 =
∫ xm

x=xm−1

exp(jkx)N e
2dx

= 4hexp(jmkh)
∫ 1

ξ1=0
exp(−jkhξ)ξ1(1− ξ1)dξ1

= hexp
(
(m− 1/2)jkh

)
C1

C1 =
2[sinc(kh/2)− cos(kh/2)]

(kh/2)2

(C.16)
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B2 =
∫ xm

x=xm−1

exp(jkx)N e
3dx +

∫ xm+1

x=xm

exp(jkx)N e
1dx

= hexp(jmkh)

[∫ 1

ξ1=0
exp(−jkhξ1)(1− ξ1)(1− 2ξ1)dξ1+

∫ 1

ξ1=0
exp(jkh(1− ξ1))ξ1(2ξ1 − 1)dξ1

]

= hexp(jmkh)
∫ 1

ξ1=0

[
exp(−jkhξ1) + exp(jkhξ1)

]
(1− ξ1)(1− 2ξ1)dξ1

= hexp(jmkh)
∫ 1

ξ1=0
2 cos(khξ1)(1− ξ1)(1− 2ξ1)dξ1

= hexp(jmkh)C2

C2 =
2

[
cos(kh) + 3− 4sinc(kh)

]

(kh)2

(C.17)

It should be noted that the diagonal element in local matrix is doubled in (C.15) since each coefficient

has a pair of basis functions on two linear elements. Assume bm = d1exp[(m − 1/2)jkh] and am =

d2exp(jmkh). Substituting them into (C.15) yields

16d1 + 4d2 cos(kh/2) = 30C1

4 cos(kh/2)d1 +
[
8− 2 cos(kh)

]
d2 = 30C2

(C.18)

Thus,

d1 =
3

8− 4 cos2 t

{[
4− cos(2t)

]
C1 − 2 cos tC2

}

d2 =
3

8− 4 cos2 t
[−2 cos tC1 + 8C2]

(C.19)

where t = kh/2. Substitution of C1 and C2 in (C.16) and (C.17) into the above equation yields

d1 =
3

(
5sinc t− 6 cos t + cos3 t

)

2t2
(
2− cos2 t

)

d2 =
3

(
3 cos2 t + 2− 5 cos t sinc t

)

t2
(
2− cos2 t

)
(C.20)

The square of the error is

Err2 =
∣∣exp(jkx)− (ai−1N1 + bmN2 + amN3)

∣∣2

= 1 + |am−1N1 + bmN2 + amN3|2 − 2Re
(
(am−1N1 + bmN2 + amN3)∗exp(jkx)

) (C.21)
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Err2 = 1 + |am−1|2N2
1 + |bm|2N2

2 + |am|2N2
3 − 2Re

(
(am−1N1 + bmN2 + amN3)

∗ exp(jkx)

+2Re
(
am−1b

∗
mN1N2 + amb∗mN2N3 + am−1a

∗
mN1N3

))

(C.22)

Using (C.14),(C.16), and (C.17), we have

∫ xm

x=xm−1
Err2dx

h
= 1 +

8
15

d2
1 +

4
15

d2
2 −

1
15

d2
2 cos(2t) +

4
15

d1d2 cos t− 2(d1C1 + d2C2) (C.23)

Thus, the RMS error is obtained by substituting d1, d2, C1, and C2 into the above equation

ErrRMS =
√

En

Ed

(C.24)

where

En = (6t2 − 30) cos4 t− 30t sin t cos3 t + (33t2 + 15 + t6) cos2 t

− 30t sin(2t)− 2t6 + 15 + 6t2

Ed = t6(−2 + cos2 t)

(C.25)

C.3 Analytical projection error of basis functions on rectangular elements

For the element shown in Fig. 5.4, the local coefficient matrix [85] [Ke
MN ]4×4, in which Ke

MN =
∫∫

∆s SM · SNds, is given by

Ke =
∆s

6




2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2




(C.26)

The local source matrix [Be
M ]4×1, in which Be

M =
∫∫

∆s SM · Jds, is given by

Be = ∆s exp
(
j(n− 1)β1 + j(m− 1)β2

)




V1
exp(jβ2)−1

jβ2

exp(jβ1)−jβ1−1
(jβ1)2

V2
exp(jβ1)−1

jβ1

exp(jβ2)−jβ2−1
(jβ2)2

V1
exp(jβ2)−1

jβ2

j2β1exp(j2β1)−exp(jβ1)+1
(jβ1)2

V2
exp(jβ1)−1

jβ1

jβ2exp(jβ2)−exp(jβ2)+1
(jβ2)2




(C.27)
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It should be noted that each coefficient corresponds to a pair of basis functions and the local matrix need

to be assembled to achieve the (5.23). In (5.26),

Err2 = |J̃− J|2 = (J̃− J) · (J̃− J)∗

= |J̃|2 + |J|2 − 2Re
(
J̃∗ − J

)

= |am n−1|2S1 · S1 + |am n|2S3 · S3 + |bm−1 n|2S2 · S2 + |bm n|2S4 · S4

+ 2Re
(
a∗m n−1am nS1 · S3 + b∗m−1 nbm nS2 · S4

)
+ |J|2

− 2Re
(
a∗m n−1S1 · J + a∗m nS3 · J + b∗m−1 nS2 · J + b∗m nS4 · J

)

(C.28)

Performing the integral of Err2 over the rectangular element and applying (C.26) and (C.27) to it yields
∫∫

∆s Err2ds

∆s
=

1
3

[
|am n−1|2 + |am n|2 + |bm−1 n|2 + |bm n|2 + Re

(
a∗m n−1am n + b∗m−1 nbm n

)]

+ |ẑ × (k̂ × p̂)|2 − 2
∆s

Re
(
a∗m n−1B

e
1 + a∗m nBe

3 + b∗m−1 nBe
2 + b∗m nBe

4

)

(C.29)

Since

a∗m n−1B
e
1 = d∗1V1

exp(jβ2)− 1
jβ2

exp(jβ1)− jβ1 − 1
(jβ1)2

exp(jβ1)∆s (C.30)

a∗m nBe
3 = d∗1V1

exp(jβ2)− 1
jβ2

j2β1exp(j2β1)− exp(jβ1) + 1
(jβ1)2

∆s (C.31)

b∗m−1 nBe
2 = d∗2V2

exp(jβ1)− 1
jβ1

exp(jβ2)− jβ2 − 1
(jβ2)2

exp(jβ2)∆s (C.32)

b∗m nBe
4 = d∗2V2

exp(jβ1)− 1
jβ1

jβ2exp(jβ2)− exp(jβ2) + 1
(jβ2)2

∆s (C.33)

we have

a∗m n−1B
e
1 + a∗m nBe

3 = d∗1d1

[
4 + 2 cos(β1)

]
/6 = |d1|2

[
4 + 2 cos(β1)

]
∆s/6

b∗m−1 nBe
2 + b∗m nBe

4 = d∗2d2

[
4 + 2 cos(β2)

]
/6 = |d2|2

[
4 + 2 cos(β2)

]
∆s/6

(C.34)

Thus, from (C.29), we have
∫∫

∆s Err2ds

∆s
=

1
3

[
2(|d1|2 + |d2|2) + |d1|2 cos(β1) + |d2|2 cos(β2)

]
+

∣∣∣ẑ × (k̂ × p̂)
∣∣∣
2

− 1
3

{
|d1|2

[
4 + 2 cos(β1)

]
+ |d2|2

[
4 + 2 cos(β2)

]}

=
1
3

{
3|ẑ × (k̂ × p̂)|2 − |d1|2

[
2 + cos(β1)

]− |d2|2
[
2 + cos(β2)

]}
(C.35)
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Therefore, the RMS error is readily obtained

Err2RMS = 1−
{
|d1|2[2 + cos(β1)] + |d2|2[2 + cos(β2)]

}/(
3|ẑ × (k̂ × p̂)|2

)
(C.36)

In addition, we have

|ẑ × (k̂ × p̂)|2 = 1

V1 = − cosφi

V2 = sin φi

|d1|2 =
36 cos2(φi)

[4 + 2 cos(β1)]2
sinc2(β2/2)sinc4(β1/2)

|d2|2 =
36 sin2(φi)

[4 + 2 cos(β2)]2
sinc2(β1/2)sinc4(β2/2)

(C.37)

for θ-polarization and

|ẑ × (k̂ × p̂)|2 = cos2 θi

V1 = cos θi sinφi

V2 = cos θi cosφi

|d1|2 =
36 cos2(θi) sin2(φi)

[4 + 2 cos(β1)]2
sinc2(β2/2)sinc4(β1/2)

|d2|2 =
36 cos2(θi) cos2(φi)

[4 + 2 cos(β2)]2
sinc2(β1/2)sinc4(β2/2)

(C.38)

for φ-polarization. Substitution of the above expressions into and simplification of (C.36) yields (5.29)

and (5.30).

C.4 Analytical projection error of basis functions on one-directional mesh

The triangular element is shown in Figure C.1. The triangular element in xy-plane is transformed

into a simplex triangular element in ξ1ξ2-plane by the coordinate transformation

r = r1ξ1 + r2ξ2 + r3ξ3 (C.39)

where ξ1 + ξ2 + ξ3 = 1. The curl-conforming basis functions are expressed by

N1 = (ξ2∇ξ3 − ξ3∇ξ2)l1

N2 = (ξ3∇ξ1 − ξ1∇ξ3)l2

N3 = (ξ1∇ξ2 − ξ2∇ξ1)l3

(C.40)
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Figure C.1 The curl-conforming basis functions on triangular elements.

where ∇ξ1 = n̂× l1/J , ∇ξ2 = n̂× l2/J , n̂ = l1 × l2/J , J = |l1 × l2|, l1 = r3 − r2, l2 = r1 − r3,

and l3 = −(l1 + l2).

The divergence-conforming basis functions, which are known as the RWG basis functions in elec-

tromagnetics, are

SM = ẑ ×NM (M = 1, 2, 3) (C.41)

For the one-directional mesh, ∆x = ∆y = h. The local coefficient matrix [Ke
MN ]3×3, in which

Ke
MN =

∫∫
∆s SM · SNds, is given by

Ke =
J
6




2 −1 0

−1 2 0

0 0 2




(C.42)
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Figure C.2 The coefficient on each edge and corresponding triangular elements
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As shown in Figure C.2, each coefficient corresponds to a pair of basis functions associated with

two triangular elements. Thus, the diagonal element in the local matrix should be doubled when using

the Galerkin method.

The interaction between the current and the divergence-conforming basis functions of a1 is

Ī1 =
∫∫

∆s1

S1 · Jds−
∫∫

∆s2

S
′
1 · Jds

=
∫∫

∆s1

(ξ2∇ξ3 − ξ3∇ξ2)l1 · (J× n̂)ds−
∫∫

∆s2

(ξ
′
2∇ξ

′
3 − ξ

′
3∇ξ

′
2)l1 · (J× n̂)ds

(C.43)

Using ∇ξ1 = −∇ξ
′
1, ∇ξ2 = −∇ξ

′
2, and the coordinate transformation (C.39), we have

Ī1 =

1∫

ξ1=0

1−ξ1∫

ξ2=0

(ξ2∇ξ3 − ξ3∇ξ2)l1 · (k̂ × p̂)exp(jβ1ξ1 + jβ2ξ2)exp(jnβ1 + jmβ2)l1J dξ2dξ1

+

1∫

ξ1=0

1−ξ1∫

ξ2=0

(ξ2∇ξ3 − ξ3∇ξ2)l1 · (k̂ × p̂)exp
(−j(β1ξ1 + β2ξ2) + jβ2

)
exp(jnβ1 + jmβ2)l1J dξ2dξ1

(C.44)

where β1 = kh sin θi cosφi and β2 = kh sin θi sinφi.

Let

V1 = h ∇ξ1 · (k̂ × p̂)

V2 = h ∇ξ2 · (k̂ × p̂).
(C.45)

Thus,

Ī1 = J ejnβ1+jmβ2

(
E1 + E∗

1ejβ2

)
(C.46)

where

E1 = −V1I11(jβ1, jβ2)− V2I12(jβ1, jβ2)

I11(jβ1, jβ2) =

1∫

ξ1=0

1−ξ1∫

ξ2=0

ξ2 exp(jβ1ξ1 + jβ2ξ2)dξ2dξ1

=
ex1−x2 − (x1 − x2)− 1

(x1 − x2)2
ex2

x2
− 1

x2
2

[
ex2

ex1−x2 − 1
x1 − x2

− ex1 − 1
x1

]
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I12(jβ1, jβ2) =

1∫

ξ1=0

1−ξ1∫

ξ2=0

(1− ξ1)exp(jβ1ξ1 + jβ2ξ2)dξ2dξ1

=
ex1−x2 − (x1 − x2)− 1

(x1 − x2)2
ex2

x2
− 1

x1x2

[
1− ex1 − 1

x1

]

Similarly,

Ī2 =
∫∫

∆s1

S2 · Jds−
∫∫

∆s2

S
′
2 · Jds

= J ejnβ1+jmβ2

(
E2 + E∗

2ejβ1

) (C.47)

Ī3 =
∫∫

∆s1

S3 · Jds−
∫∫

∆s2

S
′
3 · Jds

= J ejnβ1+jmβ2

[
E3 + E∗

3ej(β1+β2)
] (C.48)

where

E2 = V1I21(jβ1, jβ2) + V2I22(jβ1, jβ2)

E3 =
√

2
[−V1I11(jβ1, jβ2) + V2I22(jβ1, jβ2)

]

I21(jβ1, jβ2) =

1∫

ξ1=0

1−ξ1∫

ξ2=0

(1− ξ2) exp(jβ1ξ1 + jβ2ξ2)dξ2dξ1

= I12(jβ2, jβ1)

I22(jβ1, jβ2) =

1∫

ξ1=0

1−ξ1∫

ξ2=0

ξ1exp(jβ1ξ1 + jβ2ξ2)dξ2dξ1

= I11(jβ2, jβ1)

Assume a1 = d1e
jnβ1+jmβ2 , a2 = d2e

jnβ1+jmβ2 , and a3 = d3e
jnβ1+jmβ2 . Using Galerkin

method, we will obtain

J
[
2
3

d1e
jnβ1+jmβ2 − 1

6
d2e

jnβ1+jmβ2 − 1
6
d2e

jnβ1+jmβ2e−jβ1+jβ2

]
= Ī1

J
[
2
3

d2e
jnβ1+jmβ2 − 1

6
d2e

jnβ1+jmβ2 − 1
6
d2e

jnβ1+jmβ2ejβ1−jβ2

]
= Ī2

2
3
J d3e

jnβ1+jmβ2 = Ī3

(C.49)
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From the above equation, we have

d1 =
9

4− cos2(β1−β2

2 )

[
2
3
I1 +

1
6

(
1 + e−jβ1+jβ2

)
I2

]

d2 =
9

4− cos2(β1−β2

2 )

[
2
3
I2 +

1
6

(
1 + ejβ1−jβ2

)
I1

]

d3 =
2
3
I3

(C.50)

where IM = ĪM

[
exp(jnβ1 + jmβ2)J

]−1 (M = 1, 2, 3). The square of the error is

Err2 =

∣∣∣∣∣∣

3∑

M=1

aMSM − J

∣∣∣∣∣∣

2

=




3∑

M=1

aMSM − J


 ·




3∑

M=1

a∗MSM − J∗




=
3∑

M=1

(
|aM |2|SM |2

)
+ 2Re

(
a1a

∗
3S1 · S3 + a1a

∗
2S1 · S2 + a2a

∗
3S2 · S3

)

+ |J|2 − 2Re




3∑

M=1

a∗MSM · J



(C.51)

Performing the integral of Err2 over the triangular element yields

∫∫
∆s Err2ds

J =
1
3

3∑

M=1

|aM |2 − 1
3
Re

(
a1a

∗
2

)
+

1
2
|ẑ × (k̂ × p̂)|2 − 2Re




3∑

M=1

a∗MEMejnβ1+jmβ2




(C.52)

The square of RMS error is readily obtained

ErrRMS
2 =

∫∫
∆s Err2ds∫∫

∆s |ẑ × (k̂ × p̂)|2ds

= 1 +





2
3

3∑

M=1

|aM |2 − 2
3
Re

(
a1a

∗
2

)− 4Re




3∑

M=1

a∗MEMejnβ1+jmβ2








/
|ẑ × (k̂ × p̂)|2

(C.53)

Using the relationship between aM and dM , we have

ErrRMS
2 = 1 +





2
3

3∑

M=1

|dM |2 − 2
3
Re

(
d1d

∗
2

)− 4Re




3∑

M=1

d∗MEM








/
|ẑ × (k̂ × p̂)|2 (C.54)
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It is found

3∑

M=1

|dM |2 − 2
3
Re

(
d1d

∗
2

)
= 3Re




3∑

M=1

d∗MEM


 (C.55)

Thus,

ErrRMS
2 = 1− 2

3




3∑

M=1

|dM |2 − Re(d1d
∗
2)




/
|ẑ × (k̂ × p̂)|2 (C.56)

In addition,

|ẑ × (k̂ × p̂)|2 =





1, θ − pol.

cos2 θi, φ− pol.

V1 =





sinφi, θ-pol.

cos θi cosφi, φ-pol.

V2 =




− cosφi, θ-pol.

cos θi sinφi, φ-pol.

(C.57)

Using (C.56), (C.57) and the relationship between dM and IM (M = 1, 2, 3), we will get

Err2 = 1− 6
4− cos2(β1 − β2)

[
|I1|2 + |I2|2 + Re

(
I∗1I2exp(−jβ1 + jβ2)

)]− 3
2
|I3|2 (C.58)

and for φ-polarization,

Err2 = 1−
{

6
4− cos2(β1 − β2)

[
|I1|2 + |I2|2 + Re

(
I∗1I2exp(−jβ1 + jβ2)

)]− 3
2
|I3|2

}/
cos2 θi

(C.59)

Using I∗1 exp(jβ2) = I1, I2 exp(−jβ1) = I∗2 , and Re(I1I
∗
2 ) =

(|I1 + I2|2 − |I1|2 − |I2|2
)/

2, we

can obtain (5.35) and (5.36).
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